Speed up Inference of Inception v4 by Advanced Automatic Mixed Precision on Intel CPU and GPU via Docker Container or Bare Metal
Introduction
Advanced Automatic Mixed Precision (Advanced AMP) uses lower-precision data types (such as float16 or bfloat16) to make model run with 16-bit and 32-bit mixed floating-point types during training and inference to make it run faster with less memory consumption in CPU and GPU.
For detailed info, please refer to Advanced Automatic Mixed Precision
This example shows the acceleration of inference by Advanced AMP on Intel CPU or GPU via Docker container or bare metal.
In this example, we will test and compare the performance of FP32 and Advanced AMP (mix BF16/FP16 and FP32) on Intel CPU or GPU.
Step
Download the Inception v4 model from the internet.
Test the performance of original model (FP32) on Intel CPU or GPU.
Test the performance of original model by Advanced AMP (BF16 or FP16) on Intel CPU or GPU.
Compare the latency and throughputs of above two cases; print the result.
Users need to indicate the CPU or GPU as the backend, and choose Advanced AMP data type from BF16 and FP16 based on the requirements and hardware support.
Hardware Requirement
Advanced AMP supports two 16 bit floating-point types: BF16 and FP16.
Data Type | GPU | CPU |
---|---|---|
BF16 | Intel® Data Center GPU Max Series Intel® Data Center GPU Flex Series 170 Intel® Arc™ A-Series Needs to be checked for your Intel GPU |
Intel® 4th Generation Intel® Xeon® Scalable Processor (Sapphire Rapids) |
FP16 | Intel® Data Center GPU Max Series Intel® Data Center GPU Flex Series 170 Intel® Arc™ A-Series Supported by most of Intel GPU |
This example supports both types. Set the parameter according to the requirement and hardware support.
Prepare for GPU (Skip this Step for CPU)
If Running via Docker Container,
Refer to Install GPU Drivers.
If Running on Bare Metal,
Refer to Prepare to install both Intel GPU driver and Intel® oneAPI Base Toolkit.
Clone the Repository
git clone https://github.com/intel/intel-extension-for-tensorflow
cd intel-extension-for-tensorflow
export ITEX_REPO=${PWD}
Download the Pretrained-model
cd examples/infer_inception_v4_amp
wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/inceptionv4_fp32_pretrained_model.pb
Setup Running Environment
If Running via Docker Container,
For GPU,
docker pull intel/intel-extension-for-tensorflow:xpu
For CPU,
docker pull intel/intel-extension-for-tensorflow:cpu
If Running on Bare Metal,
For GPU,
./set_env_gpu.sh
For CPU,
./set_env_cpu.sh
Enable Running Environment
If Running via Docker Container,
For GPU,
docker run -it --rm -p 8888:8888 --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path -v $ITEX_REPO:/ws1 --ipc host --privileged intel/intel-extension-for-tensorflow:xpu cd /ws1/examples/infer_inception_v4_amp
For CPU,
docker run -it --rm -p 8888:8888 -v $ITEX_REPO:/ws1 --ipc host --privileged intel/intel-extension-for-tensorflow:cpu cd /ws1/examples/infer_inception_v4_amp
If Running on Bare Metal,
For GPU, refer to Running
For CPU,
source env_itex/bin/activate
Execute Testing and Comparing the Performance of FP32 and Advanced AMP on CPU and GPU in Docker Container or Bare Metal
The example supports both by two scripts:
Use Python API : infer_fp32_vs_amp.py
Use Environment Variable Configuration: infer_fp32_vs_amp.sh
Python API
Run with CPU and BF16 data type:
python infer_fp32_vs_amp.py cpu bf16
Run with GPU and BF16 data type:
python infer_fp32_vs_amp.py gpu bf16
Run with GPU and FP16 data type:
python infer_fp32_vs_amp.py gpu fp16
Environment Variable Configuration
Run with CPU and BF16 data type:
./infer_fp32_vs_amp.sh cpu bf16
Run with GPU and BF16 data type:
./infer_fp32_vs_amp.sh gpu bf16
Run with GPU and FP16 data type:
./infer_fp32_vs_amp.sh gpu fp16
Result
All cases above will output result in screen like:
Compare Result
Model FP32 BF16
Latency (s) X.01837550401687622 X.0113076031208038
Throughputs (FPS) BS=128 Y.92880015134813 Y.1691980294577
Model FP32 BF16
Latency Normalized 1 X.6153628825864496
Throughputs Normalized 1 X.867908472383153
Note, if the data type (BF16, FP16) is not supported by the hardware, the training will be executed by converting to FP32. That will make the performance worse than FP32 case.
Advanced: Enable Advanced AMP Method
There are two methods to enable Advanced AMP based on Intel® Extension for TensorFlow*: Python API & Environment Variable Configuration.
Python API
Add code in the beginning of Python code:
For BF16:
import intel_extension_for_tensorflow as itex auto_mixed_precision_options = itex.AutoMixedPrecisionOptions() auto_mixed_precision_options.data_type = itex.BFLOAT16 graph_options = itex.GraphOptions(auto_mixed_precision_options=auto_mixed_precision_options) graph_options.auto_mixed_precision = itex.ON config = itex.ConfigProto(graph_options=graph_options) itex.set_config(config)
For FP16, modify one line above:
auto_mixed_precision_options.data_type = itex.BFLOAT16 -> auto_mixed_precision_options.data_type = itex.FLOAT16
Environment Variable Configuration
Execute commands in bash:
export ITEX_AUTO_MIXED_PRECISION=1 export ITEX_AUTO_MIXED_PRECISION_DATA_TYPE=BFLOAT16 #export ITEX_AUTO_MIXED_PRECISION_DATA_TYPE=FLOAT16
For FP16, modify one line above:
export ITEX_AUTO_MIXED_PRECISION_DATA_TYPE=BFLOAT16 -> export ITEX_AUTO_MIXED_PRECISION_DATA_TYPE=FLOAT16
FAQ
If you get the following error log, refer to Enable Running Environment to Enable oneAPI running environment.
tensorflow.python.framework.errors_impl.NotFoundError: libmkl_sycl.so.2: cannot open shared object file: No such file or directory