clang  19.0.0git
RegionStore.cpp
Go to the documentation of this file.
1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a basic region store model. In this model, we do have field
10 // sensitivity. But we assume nothing about the heap shape. So recursive data
11 // structures are largely ignored. Basically we do 1-limiting analysis.
12 // Parameter pointers are assumed with no aliasing. Pointee objects of
13 // parameters are created lazily.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
23 #include "clang/Basic/TargetInfo.h"
30 #include "llvm/ADT/ImmutableMap.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <optional>
34 #include <utility>
35 
36 using namespace clang;
37 using namespace ento;
38 
39 //===----------------------------------------------------------------------===//
40 // Representation of binding keys.
41 //===----------------------------------------------------------------------===//
42 
43 namespace {
44 class BindingKey {
45 public:
46  enum Kind { Default = 0x0, Direct = 0x1 };
47 private:
48  enum { Symbolic = 0x2 };
49 
50  llvm::PointerIntPair<const MemRegion *, 2> P;
51  uint64_t Data;
52 
53  /// Create a key for a binding to region \p r, which has a symbolic offset
54  /// from region \p Base.
55  explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
56  : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
57  assert(r && Base && "Must have known regions.");
58  assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
59  }
60 
61  /// Create a key for a binding at \p offset from base region \p r.
62  explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
63  : P(r, k), Data(offset) {
64  assert(r && "Must have known regions.");
65  assert(getOffset() == offset && "Failed to store offset");
66  assert((r == r->getBaseRegion() ||
67  isa<ObjCIvarRegion, CXXDerivedObjectRegion>(r)) &&
68  "Not a base");
69  }
70 public:
71 
72  bool isDirect() const { return P.getInt() & Direct; }
73  bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
74 
75  const MemRegion *getRegion() const { return P.getPointer(); }
76  uint64_t getOffset() const {
77  assert(!hasSymbolicOffset());
78  return Data;
79  }
80 
81  const SubRegion *getConcreteOffsetRegion() const {
82  assert(hasSymbolicOffset());
83  return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
84  }
85 
86  const MemRegion *getBaseRegion() const {
87  if (hasSymbolicOffset())
88  return getConcreteOffsetRegion()->getBaseRegion();
89  return getRegion()->getBaseRegion();
90  }
91 
92  void Profile(llvm::FoldingSetNodeID& ID) const {
93  ID.AddPointer(P.getOpaqueValue());
94  ID.AddInteger(Data);
95  }
96 
97  static BindingKey Make(const MemRegion *R, Kind k);
98 
99  bool operator<(const BindingKey &X) const {
100  if (P.getOpaqueValue() < X.P.getOpaqueValue())
101  return true;
102  if (P.getOpaqueValue() > X.P.getOpaqueValue())
103  return false;
104  return Data < X.Data;
105  }
106 
107  bool operator==(const BindingKey &X) const {
108  return P.getOpaqueValue() == X.P.getOpaqueValue() &&
109  Data == X.Data;
110  }
111 
112  LLVM_DUMP_METHOD void dump() const;
113 };
114 } // end anonymous namespace
115 
116 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
117  const RegionOffset &RO = R->getAsOffset();
118  if (RO.hasSymbolicOffset())
119  return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
120 
121  return BindingKey(RO.getRegion(), RO.getOffset(), k);
122 }
123 
124 namespace llvm {
125 static inline raw_ostream &operator<<(raw_ostream &Out, BindingKey K) {
126  Out << "\"kind\": \"" << (K.isDirect() ? "Direct" : "Default")
127  << "\", \"offset\": ";
128 
129  if (!K.hasSymbolicOffset())
130  Out << K.getOffset();
131  else
132  Out << "null";
133 
134  return Out;
135 }
136 
137 } // namespace llvm
138 
139 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
140 void BindingKey::dump() const { llvm::errs() << *this; }
141 #endif
142 
143 //===----------------------------------------------------------------------===//
144 // Actual Store type.
145 //===----------------------------------------------------------------------===//
146 
147 typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings;
148 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
149 typedef std::pair<BindingKey, SVal> BindingPair;
150 
151 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
153 
154 namespace {
155 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
156  ClusterBindings> {
157  ClusterBindings::Factory *CBFactory;
158 
159  // This flag indicates whether the current bindings are within the analysis
160  // that has started from main(). It affects how we perform loads from
161  // global variables that have initializers: if we have observed the
162  // program execution from the start and we know that these variables
163  // have not been overwritten yet, we can be sure that their initializers
164  // are still relevant. This flag never gets changed when the bindings are
165  // updated, so it could potentially be moved into RegionStoreManager
166  // (as if it's the same bindings but a different loading procedure)
167  // however that would have made the manager needlessly stateful.
168  bool IsMainAnalysis;
169 
170 public:
171  typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
172  ParentTy;
173 
174  RegionBindingsRef(ClusterBindings::Factory &CBFactory,
175  const RegionBindings::TreeTy *T,
176  RegionBindings::TreeTy::Factory *F,
177  bool IsMainAnalysis)
178  : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
179  CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
180 
181  RegionBindingsRef(const ParentTy &P,
182  ClusterBindings::Factory &CBFactory,
183  bool IsMainAnalysis)
184  : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
185  CBFactory(&CBFactory), IsMainAnalysis(IsMainAnalysis) {}
186 
187  RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
188  return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
189  *CBFactory, IsMainAnalysis);
190  }
191 
192  RegionBindingsRef remove(key_type_ref K) const {
193  return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
194  *CBFactory, IsMainAnalysis);
195  }
196 
197  RegionBindingsRef addBinding(BindingKey K, SVal V) const;
198 
199  RegionBindingsRef addBinding(const MemRegion *R,
200  BindingKey::Kind k, SVal V) const;
201 
202  const SVal *lookup(BindingKey K) const;
203  const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
204  using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
205 
206  RegionBindingsRef removeBinding(BindingKey K);
207 
208  RegionBindingsRef removeBinding(const MemRegion *R,
209  BindingKey::Kind k);
210 
211  RegionBindingsRef removeBinding(const MemRegion *R) {
212  return removeBinding(R, BindingKey::Direct).
213  removeBinding(R, BindingKey::Default);
214  }
215 
216  std::optional<SVal> getDirectBinding(const MemRegion *R) const;
217 
218  /// getDefaultBinding - Returns an SVal* representing an optional default
219  /// binding associated with a region and its subregions.
220  std::optional<SVal> getDefaultBinding(const MemRegion *R) const;
221 
222  /// Return the internal tree as a Store.
223  Store asStore() const {
224  llvm::PointerIntPair<Store, 1, bool> Ptr = {
225  asImmutableMap().getRootWithoutRetain(), IsMainAnalysis};
226  return reinterpret_cast<Store>(Ptr.getOpaqueValue());
227  }
228 
229  bool isMainAnalysis() const {
230  return IsMainAnalysis;
231  }
232 
233  void printJson(raw_ostream &Out, const char *NL = "\n",
234  unsigned int Space = 0, bool IsDot = false) const {
235  for (iterator I = begin(), E = end(); I != E; ++I) {
236  // TODO: We might need a .printJson for I.getKey() as well.
237  Indent(Out, Space, IsDot)
238  << "{ \"cluster\": \"" << I.getKey() << "\", \"pointer\": \""
239  << (const void *)I.getKey() << "\", \"items\": [" << NL;
240 
241  ++Space;
242  const ClusterBindings &CB = I.getData();
243  for (ClusterBindings::iterator CI = CB.begin(), CE = CB.end(); CI != CE;
244  ++CI) {
245  Indent(Out, Space, IsDot) << "{ " << CI.getKey() << ", \"value\": ";
246  CI.getData().printJson(Out, /*AddQuotes=*/true);
247  Out << " }";
248  if (std::next(CI) != CE)
249  Out << ',';
250  Out << NL;
251  }
252 
253  --Space;
254  Indent(Out, Space, IsDot) << "]}";
255  if (std::next(I) != E)
256  Out << ',';
257  Out << NL;
258  }
259  }
260 
261  LLVM_DUMP_METHOD void dump() const { printJson(llvm::errs()); }
262 };
263 } // end anonymous namespace
264 
265 typedef const RegionBindingsRef& RegionBindingsConstRef;
266 
267 std::optional<SVal>
268 RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
269  const SVal *V = lookup(R, BindingKey::Direct);
270  return V ? std::optional<SVal>(*V) : std::nullopt;
271 }
272 
273 std::optional<SVal>
274 RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
275  const SVal *V = lookup(R, BindingKey::Default);
276  return V ? std::optional<SVal>(*V) : std::nullopt;
277 }
278 
279 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
280  const MemRegion *Base = K.getBaseRegion();
281 
282  const ClusterBindings *ExistingCluster = lookup(Base);
283  ClusterBindings Cluster =
284  (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
285 
286  ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
287  return add(Base, NewCluster);
288 }
289 
290 
291 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
292  BindingKey::Kind k,
293  SVal V) const {
294  return addBinding(BindingKey::Make(R, k), V);
295 }
296 
297 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
298  const ClusterBindings *Cluster = lookup(K.getBaseRegion());
299  if (!Cluster)
300  return nullptr;
301  return Cluster->lookup(K);
302 }
303 
304 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
305  BindingKey::Kind k) const {
306  return lookup(BindingKey::Make(R, k));
307 }
308 
309 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
310  const MemRegion *Base = K.getBaseRegion();
311  const ClusterBindings *Cluster = lookup(Base);
312  if (!Cluster)
313  return *this;
314 
315  ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
316  if (NewCluster.isEmpty())
317  return remove(Base);
318  return add(Base, NewCluster);
319 }
320 
321 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
322  BindingKey::Kind k){
323  return removeBinding(BindingKey::Make(R, k));
324 }
325 
326 //===----------------------------------------------------------------------===//
327 // Main RegionStore logic.
328 //===----------------------------------------------------------------------===//
329 
330 namespace {
331 class InvalidateRegionsWorker;
332 
333 class RegionStoreManager : public StoreManager {
334 public:
335  RegionBindings::Factory RBFactory;
336  mutable ClusterBindings::Factory CBFactory;
337 
338  typedef std::vector<SVal> SValListTy;
339 private:
340  typedef llvm::DenseMap<const LazyCompoundValData *,
341  SValListTy> LazyBindingsMapTy;
342  LazyBindingsMapTy LazyBindingsMap;
343 
344  /// The largest number of fields a struct can have and still be
345  /// considered "small".
346  ///
347  /// This is currently used to decide whether or not it is worth "forcing" a
348  /// LazyCompoundVal on bind.
349  ///
350  /// This is controlled by 'region-store-small-struct-limit' option.
351  /// To disable all small-struct-dependent behavior, set the option to "0".
352  unsigned SmallStructLimit;
353 
354  /// The largest number of element an array can have and still be
355  /// considered "small".
356  ///
357  /// This is currently used to decide whether or not it is worth "forcing" a
358  /// LazyCompoundVal on bind.
359  ///
360  /// This is controlled by 'region-store-small-struct-limit' option.
361  /// To disable all small-struct-dependent behavior, set the option to "0".
362  unsigned SmallArrayLimit;
363 
364  /// A helper used to populate the work list with the given set of
365  /// regions.
366  void populateWorkList(InvalidateRegionsWorker &W,
367  ArrayRef<SVal> Values,
368  InvalidatedRegions *TopLevelRegions);
369 
370 public:
371  RegionStoreManager(ProgramStateManager &mgr)
372  : StoreManager(mgr), RBFactory(mgr.getAllocator()),
373  CBFactory(mgr.getAllocator()), SmallStructLimit(0), SmallArrayLimit(0) {
374  ExprEngine &Eng = StateMgr.getOwningEngine();
375  AnalyzerOptions &Options = Eng.getAnalysisManager().options;
376  SmallStructLimit = Options.RegionStoreSmallStructLimit;
377  SmallArrayLimit = Options.RegionStoreSmallArrayLimit;
378  }
379 
380  /// setImplicitDefaultValue - Set the default binding for the provided
381  /// MemRegion to the value implicitly defined for compound literals when
382  /// the value is not specified.
383  RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
384  const MemRegion *R, QualType T);
385 
386  /// ArrayToPointer - Emulates the "decay" of an array to a pointer
387  /// type. 'Array' represents the lvalue of the array being decayed
388  /// to a pointer, and the returned SVal represents the decayed
389  /// version of that lvalue (i.e., a pointer to the first element of
390  /// the array). This is called by ExprEngine when evaluating
391  /// casts from arrays to pointers.
392  SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
393 
394  /// Creates the Store that correctly represents memory contents before
395  /// the beginning of the analysis of the given top-level stack frame.
396  StoreRef getInitialStore(const LocationContext *InitLoc) override {
397  bool IsMainAnalysis = false;
398  if (const auto *FD = dyn_cast<FunctionDecl>(InitLoc->getDecl()))
399  IsMainAnalysis = FD->isMain() && !Ctx.getLangOpts().CPlusPlus;
400  return StoreRef(RegionBindingsRef(
401  RegionBindingsRef::ParentTy(RBFactory.getEmptyMap(), RBFactory),
402  CBFactory, IsMainAnalysis).asStore(), *this);
403  }
404 
405  //===-------------------------------------------------------------------===//
406  // Binding values to regions.
407  //===-------------------------------------------------------------------===//
408  RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
409  const Expr *Ex,
410  unsigned Count,
411  const LocationContext *LCtx,
412  RegionBindingsRef B,
413  InvalidatedRegions *Invalidated);
414 
415  StoreRef invalidateRegions(Store store,
416  ArrayRef<SVal> Values,
417  const Expr *E, unsigned Count,
418  const LocationContext *LCtx,
419  const CallEvent *Call,
420  InvalidatedSymbols &IS,
422  InvalidatedRegions *Invalidated,
423  InvalidatedRegions *InvalidatedTopLevel) override;
424 
425  bool scanReachableSymbols(Store S, const MemRegion *R,
426  ScanReachableSymbols &Callbacks) override;
427 
428  RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
429  const SubRegion *R);
430  std::optional<SVal>
431  getConstantValFromConstArrayInitializer(RegionBindingsConstRef B,
432  const ElementRegion *R);
433  std::optional<SVal>
434  getSValFromInitListExpr(const InitListExpr *ILE,
435  const SmallVector<uint64_t, 2> &ConcreteOffsets,
436  QualType ElemT);
437  SVal getSValFromStringLiteral(const StringLiteral *SL, uint64_t Offset,
438  QualType ElemT);
439 
440 public: // Part of public interface to class.
441 
442  StoreRef Bind(Store store, Loc LV, SVal V) override {
443  return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
444  }
445 
446  RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
447 
448  // BindDefaultInitial is only used to initialize a region with
449  // a default value.
450  StoreRef BindDefaultInitial(Store store, const MemRegion *R,
451  SVal V) override {
452  RegionBindingsRef B = getRegionBindings(store);
453  // Use other APIs when you have to wipe the region that was initialized
454  // earlier.
455  assert(!(B.getDefaultBinding(R) || B.getDirectBinding(R)) &&
456  "Double initialization!");
457  B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
458  return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
459  }
460 
461  // BindDefaultZero is used for zeroing constructors that may accidentally
462  // overwrite existing bindings.
463  StoreRef BindDefaultZero(Store store, const MemRegion *R) override {
464  // FIXME: The offsets of empty bases can be tricky because of
465  // of the so called "empty base class optimization".
466  // If a base class has been optimized out
467  // we should not try to create a binding, otherwise we should.
468  // Unfortunately, at the moment ASTRecordLayout doesn't expose
469  // the actual sizes of the empty bases
470  // and trying to infer them from offsets/alignments
471  // seems to be error-prone and non-trivial because of the trailing padding.
472  // As a temporary mitigation we don't create bindings for empty bases.
473  if (const auto *BR = dyn_cast<CXXBaseObjectRegion>(R))
474  if (BR->getDecl()->isEmpty())
475  return StoreRef(store, *this);
476 
477  RegionBindingsRef B = getRegionBindings(store);
478  SVal V = svalBuilder.makeZeroVal(Ctx.CharTy);
479  B = removeSubRegionBindings(B, cast<SubRegion>(R));
480  B = B.addBinding(BindingKey::Make(R, BindingKey::Default), V);
481  return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
482  }
483 
484  /// Attempt to extract the fields of \p LCV and bind them to the struct region
485  /// \p R.
486  ///
487  /// This path is used when it seems advantageous to "force" loading the values
488  /// within a LazyCompoundVal to bind memberwise to the struct region, rather
489  /// than using a Default binding at the base of the entire region. This is a
490  /// heuristic attempting to avoid building long chains of LazyCompoundVals.
491  ///
492  /// \returns The updated store bindings, or \c std::nullopt if binding
493  /// non-lazily would be too expensive.
494  std::optional<RegionBindingsRef>
495  tryBindSmallStruct(RegionBindingsConstRef B, const TypedValueRegion *R,
496  const RecordDecl *RD, nonloc::LazyCompoundVal LCV);
497 
498  /// BindStruct - Bind a compound value to a structure.
499  RegionBindingsRef bindStruct(RegionBindingsConstRef B,
500  const TypedValueRegion* R, SVal V);
501 
502  /// BindVector - Bind a compound value to a vector.
503  RegionBindingsRef bindVector(RegionBindingsConstRef B,
504  const TypedValueRegion* R, SVal V);
505 
506  std::optional<RegionBindingsRef>
507  tryBindSmallArray(RegionBindingsConstRef B, const TypedValueRegion *R,
508  const ArrayType *AT, nonloc::LazyCompoundVal LCV);
509 
510  RegionBindingsRef bindArray(RegionBindingsConstRef B,
511  const TypedValueRegion* R,
512  SVal V);
513 
514  /// Clears out all bindings in the given region and assigns a new value
515  /// as a Default binding.
516  RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
517  const TypedRegion *R,
518  SVal DefaultVal);
519 
520  /// Create a new store with the specified binding removed.
521  /// \param ST the original store, that is the basis for the new store.
522  /// \param L the location whose binding should be removed.
523  StoreRef killBinding(Store ST, Loc L) override;
524 
525  void incrementReferenceCount(Store store) override {
526  getRegionBindings(store).manualRetain();
527  }
528 
529  /// If the StoreManager supports it, decrement the reference count of
530  /// the specified Store object. If the reference count hits 0, the memory
531  /// associated with the object is recycled.
532  void decrementReferenceCount(Store store) override {
533  getRegionBindings(store).manualRelease();
534  }
535 
536  bool includedInBindings(Store store, const MemRegion *region) const override;
537 
538  /// Return the value bound to specified location in a given state.
539  ///
540  /// The high level logic for this method is this:
541  /// getBinding (L)
542  /// if L has binding
543  /// return L's binding
544  /// else if L is in killset
545  /// return unknown
546  /// else
547  /// if L is on stack or heap
548  /// return undefined
549  /// else
550  /// return symbolic
551  SVal getBinding(Store S, Loc L, QualType T) override {
552  return getBinding(getRegionBindings(S), L, T);
553  }
554 
555  std::optional<SVal> getDefaultBinding(Store S, const MemRegion *R) override {
556  RegionBindingsRef B = getRegionBindings(S);
557  // Default bindings are always applied over a base region so look up the
558  // base region's default binding, otherwise the lookup will fail when R
559  // is at an offset from R->getBaseRegion().
560  return B.getDefaultBinding(R->getBaseRegion());
561  }
562 
563  SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
564 
565  SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
566 
567  SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
568 
569  SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
570 
571  SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
572 
573  SVal getBindingForLazySymbol(const TypedValueRegion *R);
574 
575  SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
576  const TypedValueRegion *R,
577  QualType Ty);
578 
579  SVal getLazyBinding(const SubRegion *LazyBindingRegion,
580  RegionBindingsRef LazyBinding);
581 
582  /// Get bindings for the values in a struct and return a CompoundVal, used
583  /// when doing struct copy:
584  /// struct s x, y;
585  /// x = y;
586  /// y's value is retrieved by this method.
587  SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
588  SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
589  NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
590 
591  /// Used to lazily generate derived symbols for bindings that are defined
592  /// implicitly by default bindings in a super region.
593  ///
594  /// Note that callers may need to specially handle LazyCompoundVals, which
595  /// are returned as is in case the caller needs to treat them differently.
596  std::optional<SVal>
597  getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
598  const MemRegion *superR,
599  const TypedValueRegion *R, QualType Ty);
600 
601  /// Get the state and region whose binding this region \p R corresponds to.
602  ///
603  /// If there is no lazy binding for \p R, the returned value will have a null
604  /// \c second. Note that a null pointer can represents a valid Store.
605  std::pair<Store, const SubRegion *>
606  findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
607  const SubRegion *originalRegion);
608 
609  /// Returns the cached set of interesting SVals contained within a lazy
610  /// binding.
611  ///
612  /// The precise value of "interesting" is determined for the purposes of
613  /// RegionStore's internal analysis. It must always contain all regions and
614  /// symbols, but may omit constants and other kinds of SVal.
615  ///
616  /// In contrast to compound values, LazyCompoundVals are also added
617  /// to the 'interesting values' list in addition to the child interesting
618  /// values.
619  const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
620 
621  //===------------------------------------------------------------------===//
622  // State pruning.
623  //===------------------------------------------------------------------===//
624 
625  /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
626  /// It returns a new Store with these values removed.
627  StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
628  SymbolReaper& SymReaper) override;
629 
630  //===------------------------------------------------------------------===//
631  // Utility methods.
632  //===------------------------------------------------------------------===//
633 
634  RegionBindingsRef getRegionBindings(Store store) const {
635  llvm::PointerIntPair<Store, 1, bool> Ptr;
636  Ptr.setFromOpaqueValue(const_cast<void *>(store));
637  return RegionBindingsRef(
638  CBFactory,
639  static_cast<const RegionBindings::TreeTy *>(Ptr.getPointer()),
640  RBFactory.getTreeFactory(),
641  Ptr.getInt());
642  }
643 
644  void printJson(raw_ostream &Out, Store S, const char *NL = "\n",
645  unsigned int Space = 0, bool IsDot = false) const override;
646 
647  void iterBindings(Store store, BindingsHandler& f) override {
648  RegionBindingsRef B = getRegionBindings(store);
649  for (const auto &[Region, Cluster] : B) {
650  for (const auto &[Key, Value] : Cluster) {
651  if (!Key.isDirect())
652  continue;
653  if (const SubRegion *R = dyn_cast<SubRegion>(Key.getRegion())) {
654  // FIXME: Possibly incorporate the offset?
655  if (!f.HandleBinding(*this, store, R, Value))
656  return;
657  }
658  }
659  }
660  }
661 };
662 
663 } // end anonymous namespace
664 
665 //===----------------------------------------------------------------------===//
666 // RegionStore creation.
667 //===----------------------------------------------------------------------===//
668 
669 std::unique_ptr<StoreManager>
671  return std::make_unique<RegionStoreManager>(StMgr);
672 }
673 
674 //===----------------------------------------------------------------------===//
675 // Region Cluster analysis.
676 //===----------------------------------------------------------------------===//
677 
678 namespace {
679 /// Used to determine which global regions are automatically included in the
680 /// initial worklist of a ClusterAnalysis.
681 enum GlobalsFilterKind {
682  /// Don't include any global regions.
683  GFK_None,
684  /// Only include system globals.
685  GFK_SystemOnly,
686  /// Include all global regions.
687  GFK_All
688 };
689 
690 template <typename DERIVED>
691 class ClusterAnalysis {
692 protected:
693  typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
694  typedef const MemRegion * WorkListElement;
696 
698 
699  WorkList WL;
700 
701  RegionStoreManager &RM;
702  ASTContext &Ctx;
703  SValBuilder &svalBuilder;
704 
705  RegionBindingsRef B;
706 
707 
708 protected:
709  const ClusterBindings *getCluster(const MemRegion *R) {
710  return B.lookup(R);
711  }
712 
713  /// Returns true if all clusters in the given memspace should be initially
714  /// included in the cluster analysis. Subclasses may provide their
715  /// own implementation.
716  bool includeEntireMemorySpace(const MemRegion *Base) {
717  return false;
718  }
719 
720 public:
721  ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
722  RegionBindingsRef b)
723  : RM(rm), Ctx(StateMgr.getContext()),
724  svalBuilder(StateMgr.getSValBuilder()), B(std::move(b)) {}
725 
726  RegionBindingsRef getRegionBindings() const { return B; }
727 
728  bool isVisited(const MemRegion *R) {
729  return Visited.count(getCluster(R));
730  }
731 
732  void GenerateClusters() {
733  // Scan the entire set of bindings and record the region clusters.
734  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
735  RI != RE; ++RI){
736  const MemRegion *Base = RI.getKey();
737 
738  const ClusterBindings &Cluster = RI.getData();
739  assert(!Cluster.isEmpty() && "Empty clusters should be removed");
740  static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
741 
742  // If the base's memspace should be entirely invalidated, add the cluster
743  // to the workspace up front.
744  if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
745  AddToWorkList(WorkListElement(Base), &Cluster);
746  }
747  }
748 
749  bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
750  if (C && !Visited.insert(C).second)
751  return false;
752  WL.push_back(E);
753  return true;
754  }
755 
756  bool AddToWorkList(const MemRegion *R) {
757  return static_cast<DERIVED*>(this)->AddToWorkList(R);
758  }
759 
760  void RunWorkList() {
761  while (!WL.empty()) {
762  WorkListElement E = WL.pop_back_val();
763  const MemRegion *BaseR = E;
764 
765  static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
766  }
767  }
768 
769  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
770  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
771 
772  void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
773  bool Flag) {
774  static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
775  }
776 };
777 }
778 
779 //===----------------------------------------------------------------------===//
780 // Binding invalidation.
781 //===----------------------------------------------------------------------===//
782 
783 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
784  ScanReachableSymbols &Callbacks) {
785  assert(R == R->getBaseRegion() && "Should only be called for base regions");
786  RegionBindingsRef B = getRegionBindings(S);
787  const ClusterBindings *Cluster = B.lookup(R);
788 
789  if (!Cluster)
790  return true;
791 
792  for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
793  RI != RE; ++RI) {
794  if (!Callbacks.scan(RI.getData()))
795  return false;
796  }
797 
798  return true;
799 }
800 
801 static inline bool isUnionField(const FieldRegion *FR) {
802  return FR->getDecl()->getParent()->isUnion();
803 }
804 
806 
807 static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
808  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
809 
810  const MemRegion *Base = K.getConcreteOffsetRegion();
811  const MemRegion *R = K.getRegion();
812 
813  while (R != Base) {
814  if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
815  if (!isUnionField(FR))
816  Fields.push_back(FR->getDecl());
817 
818  R = cast<SubRegion>(R)->getSuperRegion();
819  }
820 }
821 
822 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
823  assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
824 
825  if (Fields.empty())
826  return true;
827 
828  FieldVector FieldsInBindingKey;
829  getSymbolicOffsetFields(K, FieldsInBindingKey);
830 
831  ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
832  if (Delta >= 0)
833  return std::equal(FieldsInBindingKey.begin() + Delta,
834  FieldsInBindingKey.end(),
835  Fields.begin());
836  else
837  return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
838  Fields.begin() - Delta);
839 }
840 
841 /// Collects all bindings in \p Cluster that may refer to bindings within
842 /// \p Top.
843 ///
844 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
845 /// \c second is the value (an SVal).
846 ///
847 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
848 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
849 /// an aggregate within a larger aggregate with a default binding.
850 static void
852  SValBuilder &SVB, const ClusterBindings &Cluster,
853  const SubRegion *Top, BindingKey TopKey,
854  bool IncludeAllDefaultBindings) {
855  FieldVector FieldsInSymbolicSubregions;
856  if (TopKey.hasSymbolicOffset()) {
857  getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
858  Top = TopKey.getConcreteOffsetRegion();
859  TopKey = BindingKey::Make(Top, BindingKey::Default);
860  }
861 
862  // Find the length (in bits) of the region being invalidated.
863  uint64_t Length = UINT64_MAX;
864  SVal Extent = Top->getMemRegionManager().getStaticSize(Top, SVB);
865  if (std::optional<nonloc::ConcreteInt> ExtentCI =
866  Extent.getAs<nonloc::ConcreteInt>()) {
867  const llvm::APSInt &ExtentInt = ExtentCI->getValue();
868  assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
869  // Extents are in bytes but region offsets are in bits. Be careful!
870  Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
871  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
872  if (FR->getDecl()->isBitField())
873  Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
874  }
875 
876  for (const auto &StoreEntry : Cluster) {
877  BindingKey NextKey = StoreEntry.first;
878  if (NextKey.getRegion() == TopKey.getRegion()) {
879  // FIXME: This doesn't catch the case where we're really invalidating a
880  // region with a symbolic offset. Example:
881  // R: points[i].y
882  // Next: points[0].x
883 
884  if (NextKey.getOffset() > TopKey.getOffset() &&
885  NextKey.getOffset() - TopKey.getOffset() < Length) {
886  // Case 1: The next binding is inside the region we're invalidating.
887  // Include it.
888  Bindings.push_back(StoreEntry);
889 
890  } else if (NextKey.getOffset() == TopKey.getOffset()) {
891  // Case 2: The next binding is at the same offset as the region we're
892  // invalidating. In this case, we need to leave default bindings alone,
893  // since they may be providing a default value for a regions beyond what
894  // we're invalidating.
895  // FIXME: This is probably incorrect; consider invalidating an outer
896  // struct whose first field is bound to a LazyCompoundVal.
897  if (IncludeAllDefaultBindings || NextKey.isDirect())
898  Bindings.push_back(StoreEntry);
899  }
900 
901  } else if (NextKey.hasSymbolicOffset()) {
902  const MemRegion *Base = NextKey.getConcreteOffsetRegion();
903  if (Top->isSubRegionOf(Base) && Top != Base) {
904  // Case 3: The next key is symbolic and we just changed something within
905  // its concrete region. We don't know if the binding is still valid, so
906  // we'll be conservative and include it.
907  if (IncludeAllDefaultBindings || NextKey.isDirect())
908  if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
909  Bindings.push_back(StoreEntry);
910  } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
911  // Case 4: The next key is symbolic, but we changed a known
912  // super-region. In this case the binding is certainly included.
913  if (BaseSR->isSubRegionOf(Top))
914  if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
915  Bindings.push_back(StoreEntry);
916  }
917  }
918  }
919 }
920 
921 static void
923  SValBuilder &SVB, const ClusterBindings &Cluster,
924  const SubRegion *Top, bool IncludeAllDefaultBindings) {
925  collectSubRegionBindings(Bindings, SVB, Cluster, Top,
926  BindingKey::Make(Top, BindingKey::Default),
927  IncludeAllDefaultBindings);
928 }
929 
930 RegionBindingsRef
931 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
932  const SubRegion *Top) {
933  BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
934  const MemRegion *ClusterHead = TopKey.getBaseRegion();
935 
936  if (Top == ClusterHead) {
937  // We can remove an entire cluster's bindings all in one go.
938  return B.remove(Top);
939  }
940 
941  const ClusterBindings *Cluster = B.lookup(ClusterHead);
942  if (!Cluster) {
943  // If we're invalidating a region with a symbolic offset, we need to make
944  // sure we don't treat the base region as uninitialized anymore.
945  if (TopKey.hasSymbolicOffset()) {
946  const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
947  return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
948  }
949  return B;
950  }
951 
953  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
954  /*IncludeAllDefaultBindings=*/false);
955 
956  ClusterBindingsRef Result(*Cluster, CBFactory);
957  for (BindingKey Key : llvm::make_first_range(Bindings))
958  Result = Result.remove(Key);
959 
960  // If we're invalidating a region with a symbolic offset, we need to make sure
961  // we don't treat the base region as uninitialized anymore.
962  // FIXME: This isn't very precise; see the example in
963  // collectSubRegionBindings.
964  if (TopKey.hasSymbolicOffset()) {
965  const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
966  Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
967  UnknownVal());
968  }
969 
970  if (Result.isEmpty())
971  return B.remove(ClusterHead);
972  return B.add(ClusterHead, Result.asImmutableMap());
973 }
974 
975 namespace {
976 class InvalidateRegionsWorker : public ClusterAnalysis<InvalidateRegionsWorker>
977 {
978  const Expr *Ex;
979  unsigned Count;
980  const LocationContext *LCtx;
981  InvalidatedSymbols &IS;
984  GlobalsFilterKind GlobalsFilter;
985 public:
986  InvalidateRegionsWorker(RegionStoreManager &rm,
987  ProgramStateManager &stateMgr,
988  RegionBindingsRef b,
989  const Expr *ex, unsigned count,
990  const LocationContext *lctx,
991  InvalidatedSymbols &is,
994  GlobalsFilterKind GFK)
995  : ClusterAnalysis<InvalidateRegionsWorker>(rm, stateMgr, b),
996  Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
997  GlobalsFilter(GFK) {}
998 
999  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
1000  void VisitBinding(SVal V);
1001 
1002  using ClusterAnalysis::AddToWorkList;
1003 
1004  bool AddToWorkList(const MemRegion *R);
1005 
1006  /// Returns true if all clusters in the memory space for \p Base should be
1007  /// be invalidated.
1008  bool includeEntireMemorySpace(const MemRegion *Base);
1009 
1010  /// Returns true if the memory space of the given region is one of the global
1011  /// regions specially included at the start of invalidation.
1012  bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
1013 };
1014 }
1015 
1016 bool InvalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
1017  bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1019  const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
1020  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
1021 }
1022 
1023 void InvalidateRegionsWorker::VisitBinding(SVal V) {
1024  // A symbol? Mark it touched by the invalidation.
1025  if (SymbolRef Sym = V.getAsSymbol())
1026  IS.insert(Sym);
1027 
1028  if (const MemRegion *R = V.getAsRegion()) {
1029  AddToWorkList(R);
1030  return;
1031  }
1032 
1033  // Is it a LazyCompoundVal? All references get invalidated as well.
1034  if (std::optional<nonloc::LazyCompoundVal> LCS =
1035  V.getAs<nonloc::LazyCompoundVal>()) {
1036 
1037  // `getInterestingValues()` returns SVals contained within LazyCompoundVals,
1038  // so there is no need to visit them.
1039  for (SVal V : RM.getInterestingValues(*LCS))
1040  if (!isa<nonloc::LazyCompoundVal>(V))
1041  VisitBinding(V);
1042 
1043  return;
1044  }
1045 }
1046 
1047 void InvalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
1048  const ClusterBindings *C) {
1049 
1050  bool PreserveRegionsContents =
1051  ITraits.hasTrait(baseR,
1053 
1054  if (C) {
1055  for (SVal Val : llvm::make_second_range(*C))
1056  VisitBinding(Val);
1057 
1058  // Invalidate regions contents.
1059  if (!PreserveRegionsContents)
1060  B = B.remove(baseR);
1061  }
1062 
1063  if (const auto *TO = dyn_cast<TypedValueRegion>(baseR)) {
1064  if (const auto *RD = TO->getValueType()->getAsCXXRecordDecl()) {
1065 
1066  // Lambdas can affect all static local variables without explicitly
1067  // capturing those.
1068  // We invalidate all static locals referenced inside the lambda body.
1069  if (RD->isLambda() && RD->getLambdaCallOperator()->getBody()) {
1070  using namespace ast_matchers;
1071 
1072  const char *DeclBind = "DeclBind";
1074  to(varDecl(hasStaticStorageDuration()).bind(DeclBind)))));
1075  auto Matches =
1076  match(RefToStatic, *RD->getLambdaCallOperator()->getBody(),
1077  RD->getASTContext());
1078 
1079  for (BoundNodes &Match : Matches) {
1080  auto *VD = Match.getNodeAs<VarDecl>(DeclBind);
1081  const VarRegion *ToInvalidate =
1082  RM.getRegionManager().getVarRegion(VD, LCtx);
1083  AddToWorkList(ToInvalidate);
1084  }
1085  }
1086  }
1087  }
1088 
1089  // BlockDataRegion? If so, invalidate captured variables that are passed
1090  // by reference.
1091  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1092  for (auto Var : BR->referenced_vars()) {
1093  const VarRegion *VR = Var.getCapturedRegion();
1094  const VarDecl *VD = VR->getDecl();
1095  if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1096  AddToWorkList(VR);
1097  }
1098  else if (Loc::isLocType(VR->getValueType())) {
1099  // Map the current bindings to a Store to retrieve the value
1100  // of the binding. If that binding itself is a region, we should
1101  // invalidate that region. This is because a block may capture
1102  // a pointer value, but the thing pointed by that pointer may
1103  // get invalidated.
1104  SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1105  if (std::optional<Loc> L = V.getAs<Loc>()) {
1106  if (const MemRegion *LR = L->getAsRegion())
1107  AddToWorkList(LR);
1108  }
1109  }
1110  }
1111  return;
1112  }
1113 
1114  // Symbolic region?
1115  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1116  IS.insert(SR->getSymbol());
1117 
1118  // Nothing else should be done in the case when we preserve regions context.
1119  if (PreserveRegionsContents)
1120  return;
1121 
1122  // Otherwise, we have a normal data region. Record that we touched the region.
1123  if (Regions)
1124  Regions->push_back(baseR);
1125 
1126  if (isa<AllocaRegion, SymbolicRegion>(baseR)) {
1127  // Invalidate the region by setting its default value to
1128  // conjured symbol. The type of the symbol is irrelevant.
1130  svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1131  B = B.addBinding(baseR, BindingKey::Default, V);
1132  return;
1133  }
1134 
1135  if (!baseR->isBoundable())
1136  return;
1137 
1138  const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1139  QualType T = TR->getValueType();
1140 
1141  if (isInitiallyIncludedGlobalRegion(baseR)) {
1142  // If the region is a global and we are invalidating all globals,
1143  // erasing the entry is good enough. This causes all globals to be lazily
1144  // symbolicated from the same base symbol.
1145  return;
1146  }
1147 
1148  if (T->isRecordType()) {
1149  // Invalidate the region by setting its default value to
1150  // conjured symbol. The type of the symbol is irrelevant.
1151  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1152  Ctx.IntTy, Count);
1153  B = B.addBinding(baseR, BindingKey::Default, V);
1154  return;
1155  }
1156 
1157  if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1158  bool doNotInvalidateSuperRegion = ITraits.hasTrait(
1159  baseR,
1161 
1162  if (doNotInvalidateSuperRegion) {
1163  // We are not doing blank invalidation of the whole array region so we
1164  // have to manually invalidate each elements.
1165  std::optional<uint64_t> NumElements;
1166 
1167  // Compute lower and upper offsets for region within array.
1168  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
1169  NumElements = CAT->getZExtSize();
1170  if (!NumElements) // We are not dealing with a constant size array
1171  goto conjure_default;
1172  QualType ElementTy = AT->getElementType();
1173  uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
1174  const RegionOffset &RO = baseR->getAsOffset();
1175  const MemRegion *SuperR = baseR->getBaseRegion();
1176  if (RO.hasSymbolicOffset()) {
1177  // If base region has a symbolic offset,
1178  // we revert to invalidating the super region.
1179  if (SuperR)
1180  AddToWorkList(SuperR);
1181  goto conjure_default;
1182  }
1183 
1184  uint64_t LowerOffset = RO.getOffset();
1185  uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
1186  bool UpperOverflow = UpperOffset < LowerOffset;
1187 
1188  // Invalidate regions which are within array boundaries,
1189  // or have a symbolic offset.
1190  if (!SuperR)
1191  goto conjure_default;
1192 
1193  const ClusterBindings *C = B.lookup(SuperR);
1194  if (!C)
1195  goto conjure_default;
1196 
1197  for (const auto &[BK, V] : *C) {
1198  std::optional<uint64_t> ROffset =
1199  BK.hasSymbolicOffset() ? std::optional<uint64_t>() : BK.getOffset();
1200 
1201  // Check offset is not symbolic and within array's boundaries.
1202  // Handles arrays of 0 elements and of 0-sized elements as well.
1203  if (!ROffset ||
1204  ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
1205  (UpperOverflow &&
1206  (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
1207  (LowerOffset == UpperOffset && *ROffset == LowerOffset))) {
1208  B = B.removeBinding(BK);
1209  // Bound symbolic regions need to be invalidated for dead symbol
1210  // detection.
1211  const MemRegion *R = V.getAsRegion();
1212  if (isa_and_nonnull<SymbolicRegion>(R))
1213  VisitBinding(V);
1214  }
1215  }
1216  }
1217  conjure_default:
1218  // Set the default value of the array to conjured symbol.
1220  svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1221  AT->getElementType(), Count);
1222  B = B.addBinding(baseR, BindingKey::Default, V);
1223  return;
1224  }
1225 
1226  DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1227  T,Count);
1228  assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1229  B = B.addBinding(baseR, BindingKey::Direct, V);
1230 }
1231 
1232 bool InvalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
1233  const MemRegion *R) {
1234  switch (GlobalsFilter) {
1235  case GFK_None:
1236  return false;
1237  case GFK_SystemOnly:
1238  return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
1239  case GFK_All:
1240  return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
1241  }
1242 
1243  llvm_unreachable("unknown globals filter");
1244 }
1245 
1246 bool InvalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
1247  if (isInitiallyIncludedGlobalRegion(Base))
1248  return true;
1249 
1250  const MemSpaceRegion *MemSpace = Base->getMemorySpace();
1251  return ITraits.hasTrait(MemSpace,
1253 }
1254 
1255 RegionBindingsRef
1256 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1257  const Expr *Ex,
1258  unsigned Count,
1259  const LocationContext *LCtx,
1260  RegionBindingsRef B,
1261  InvalidatedRegions *Invalidated) {
1262  // Bind the globals memory space to a new symbol that we will use to derive
1263  // the bindings for all globals.
1264  const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1265  SVal V = svalBuilder.conjureSymbolVal(/* symbolTag = */ (const void*) GS, Ex, LCtx,
1266  /* type does not matter */ Ctx.IntTy,
1267  Count);
1268 
1269  B = B.removeBinding(GS)
1270  .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1271 
1272  // Even if there are no bindings in the global scope, we still need to
1273  // record that we touched it.
1274  if (Invalidated)
1275  Invalidated->push_back(GS);
1276 
1277  return B;
1278 }
1279 
1280 void RegionStoreManager::populateWorkList(InvalidateRegionsWorker &W,
1281  ArrayRef<SVal> Values,
1282  InvalidatedRegions *TopLevelRegions) {
1283  for (SVal V : Values) {
1284  if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) {
1285  for (SVal S : getInterestingValues(*LCS))
1286  if (const MemRegion *R = S.getAsRegion())
1287  W.AddToWorkList(R);
1288 
1289  continue;
1290  }
1291 
1292  if (const MemRegion *R = V.getAsRegion()) {
1293  if (TopLevelRegions)
1294  TopLevelRegions->push_back(R);
1295  W.AddToWorkList(R);
1296  continue;
1297  }
1298  }
1299 }
1300 
1301 StoreRef
1302 RegionStoreManager::invalidateRegions(Store store,
1303  ArrayRef<SVal> Values,
1304  const Expr *Ex, unsigned Count,
1305  const LocationContext *LCtx,
1306  const CallEvent *Call,
1307  InvalidatedSymbols &IS,
1309  InvalidatedRegions *TopLevelRegions,
1310  InvalidatedRegions *Invalidated) {
1311  GlobalsFilterKind GlobalsFilter;
1312  if (Call) {
1313  if (Call->isInSystemHeader())
1314  GlobalsFilter = GFK_SystemOnly;
1315  else
1316  GlobalsFilter = GFK_All;
1317  } else {
1318  GlobalsFilter = GFK_None;
1319  }
1320 
1321  RegionBindingsRef B = getRegionBindings(store);
1322  InvalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1323  Invalidated, GlobalsFilter);
1324 
1325  // Scan the bindings and generate the clusters.
1326  W.GenerateClusters();
1327 
1328  // Add the regions to the worklist.
1329  populateWorkList(W, Values, TopLevelRegions);
1330 
1331  W.RunWorkList();
1332 
1333  // Return the new bindings.
1334  B = W.getRegionBindings();
1335 
1336  // For calls, determine which global regions should be invalidated and
1337  // invalidate them. (Note that function-static and immutable globals are never
1338  // invalidated by this.)
1339  // TODO: This could possibly be more precise with modules.
1340  switch (GlobalsFilter) {
1341  case GFK_All:
1342  B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1343  Ex, Count, LCtx, B, Invalidated);
1344  [[fallthrough]];
1345  case GFK_SystemOnly:
1346  B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1347  Ex, Count, LCtx, B, Invalidated);
1348  [[fallthrough]];
1349  case GFK_None:
1350  break;
1351  }
1352 
1353  return StoreRef(B.asStore(), *this);
1354 }
1355 
1356 //===----------------------------------------------------------------------===//
1357 // Location and region casting.
1358 //===----------------------------------------------------------------------===//
1359 
1360 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1361 /// type. 'Array' represents the lvalue of the array being decayed
1362 /// to a pointer, and the returned SVal represents the decayed
1363 /// version of that lvalue (i.e., a pointer to the first element of
1364 /// the array). This is called by ExprEngine when evaluating casts
1365 /// from arrays to pointers.
1366 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1367  if (isa<loc::ConcreteInt>(Array))
1368  return Array;
1369 
1370  if (!isa<loc::MemRegionVal>(Array))
1371  return UnknownVal();
1372 
1373  const SubRegion *R =
1374  cast<SubRegion>(Array.castAs<loc::MemRegionVal>().getRegion());
1375  NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1376  return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1377 }
1378 
1379 //===----------------------------------------------------------------------===//
1380 // Loading values from regions.
1381 //===----------------------------------------------------------------------===//
1382 
1383 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1384  assert(!isa<UnknownVal>(L) && "location unknown");
1385  assert(!isa<UndefinedVal>(L) && "location undefined");
1386 
1387  // For access to concrete addresses, return UnknownVal. Checks
1388  // for null dereferences (and similar errors) are done by checkers, not
1389  // the Store.
1390  // FIXME: We can consider lazily symbolicating such memory, but we really
1391  // should defer this when we can reason easily about symbolicating arrays
1392  // of bytes.
1393  if (L.getAs<loc::ConcreteInt>()) {
1394  return UnknownVal();
1395  }
1396  if (!L.getAs<loc::MemRegionVal>()) {
1397  return UnknownVal();
1398  }
1399 
1400  const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1401 
1402  if (isa<BlockDataRegion>(MR)) {
1403  return UnknownVal();
1404  }
1405 
1406  // Auto-detect the binding type.
1407  if (T.isNull()) {
1408  if (const auto *TVR = dyn_cast<TypedValueRegion>(MR))
1409  T = TVR->getValueType();
1410  else if (const auto *TR = dyn_cast<TypedRegion>(MR))
1411  T = TR->getLocationType()->getPointeeType();
1412  else if (const auto *SR = dyn_cast<SymbolicRegion>(MR))
1413  T = SR->getPointeeStaticType();
1414  }
1415  assert(!T.isNull() && "Unable to auto-detect binding type!");
1416  assert(!T->isVoidType() && "Attempting to dereference a void pointer!");
1417 
1418  if (!isa<TypedValueRegion>(MR))
1419  MR = GetElementZeroRegion(cast<SubRegion>(MR), T);
1420 
1421  // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1422  // instead of 'Loc', and have the other Loc cases handled at a higher level.
1423  const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1424  QualType RTy = R->getValueType();
1425 
1426  // FIXME: we do not yet model the parts of a complex type, so treat the
1427  // whole thing as "unknown".
1428  if (RTy->isAnyComplexType())
1429  return UnknownVal();
1430 
1431  // FIXME: We should eventually handle funny addressing. e.g.:
1432  //
1433  // int x = ...;
1434  // int *p = &x;
1435  // char *q = (char*) p;
1436  // char c = *q; // returns the first byte of 'x'.
1437  //
1438  // Such funny addressing will occur due to layering of regions.
1439  if (RTy->isStructureOrClassType())
1440  return getBindingForStruct(B, R);
1441 
1442  // FIXME: Handle unions.
1443  if (RTy->isUnionType())
1444  return createLazyBinding(B, R);
1445 
1446  if (RTy->isArrayType()) {
1447  if (RTy->isConstantArrayType())
1448  return getBindingForArray(B, R);
1449  else
1450  return UnknownVal();
1451  }
1452 
1453  // FIXME: handle Vector types.
1454  if (RTy->isVectorType())
1455  return UnknownVal();
1456 
1457  if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1458  return svalBuilder.evalCast(getBindingForField(B, FR), T, QualType{});
1459 
1460  if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1461  // FIXME: Here we actually perform an implicit conversion from the loaded
1462  // value to the element type. Eventually we want to compose these values
1463  // more intelligently. For example, an 'element' can encompass multiple
1464  // bound regions (e.g., several bound bytes), or could be a subset of
1465  // a larger value.
1466  return svalBuilder.evalCast(getBindingForElement(B, ER), T, QualType{});
1467  }
1468 
1469  if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1470  // FIXME: Here we actually perform an implicit conversion from the loaded
1471  // value to the ivar type. What we should model is stores to ivars
1472  // that blow past the extent of the ivar. If the address of the ivar is
1473  // reinterpretted, it is possible we stored a different value that could
1474  // fit within the ivar. Either we need to cast these when storing them
1475  // or reinterpret them lazily (as we do here).
1476  return svalBuilder.evalCast(getBindingForObjCIvar(B, IVR), T, QualType{});
1477  }
1478 
1479  if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1480  // FIXME: Here we actually perform an implicit conversion from the loaded
1481  // value to the variable type. What we should model is stores to variables
1482  // that blow past the extent of the variable. If the address of the
1483  // variable is reinterpretted, it is possible we stored a different value
1484  // that could fit within the variable. Either we need to cast these when
1485  // storing them or reinterpret them lazily (as we do here).
1486  return svalBuilder.evalCast(getBindingForVar(B, VR), T, QualType{});
1487  }
1488 
1489  const SVal *V = B.lookup(R, BindingKey::Direct);
1490 
1491  // Check if the region has a binding.
1492  if (V)
1493  return *V;
1494 
1495  // The location does not have a bound value. This means that it has
1496  // the value it had upon its creation and/or entry to the analyzed
1497  // function/method. These are either symbolic values or 'undefined'.
1498  if (R->hasStackNonParametersStorage()) {
1499  // All stack variables are considered to have undefined values
1500  // upon creation. All heap allocated blocks are considered to
1501  // have undefined values as well unless they are explicitly bound
1502  // to specific values.
1503  return UndefinedVal();
1504  }
1505 
1506  // All other values are symbolic.
1507  return svalBuilder.getRegionValueSymbolVal(R);
1508 }
1509 
1511  QualType RegionTy;
1512  if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1513  RegionTy = TVR->getValueType();
1514 
1515  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1516  RegionTy = SR->getSymbol()->getType();
1517 
1518  return RegionTy;
1519 }
1520 
1521 /// Checks to see if store \p B has a lazy binding for region \p R.
1522 ///
1523 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1524 /// if there are additional bindings within \p R.
1525 ///
1526 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1527 /// for lazy bindings for super-regions of \p R.
1528 static std::optional<nonloc::LazyCompoundVal>
1530  const SubRegion *R, bool AllowSubregionBindings) {
1531  std::optional<SVal> V = B.getDefaultBinding(R);
1532  if (!V)
1533  return std::nullopt;
1534 
1535  std::optional<nonloc::LazyCompoundVal> LCV =
1536  V->getAs<nonloc::LazyCompoundVal>();
1537  if (!LCV)
1538  return std::nullopt;
1539 
1540  // If the LCV is for a subregion, the types might not match, and we shouldn't
1541  // reuse the binding.
1542  QualType RegionTy = getUnderlyingType(R);
1543  if (!RegionTy.isNull() &&
1544  !RegionTy->isVoidPointerType()) {
1545  QualType SourceRegionTy = LCV->getRegion()->getValueType();
1546  if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1547  return std::nullopt;
1548  }
1549 
1550  if (!AllowSubregionBindings) {
1551  // If there are any other bindings within this region, we shouldn't reuse
1552  // the top-level binding.
1554  collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1555  /*IncludeAllDefaultBindings=*/true);
1556  if (Bindings.size() > 1)
1557  return std::nullopt;
1558  }
1559 
1560  return *LCV;
1561 }
1562 
1563 std::pair<Store, const SubRegion *>
1564 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1565  const SubRegion *R,
1566  const SubRegion *originalRegion) {
1567  if (originalRegion != R) {
1568  if (std::optional<nonloc::LazyCompoundVal> V =
1569  getExistingLazyBinding(svalBuilder, B, R, true))
1570  return std::make_pair(V->getStore(), V->getRegion());
1571  }
1572 
1573  typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1574  StoreRegionPair Result = StoreRegionPair();
1575 
1576  if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1577  Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1578  originalRegion);
1579 
1580  if (Result.second)
1581  Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1582 
1583  } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1584  Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1585  originalRegion);
1586 
1587  if (Result.second)
1588  Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1589 
1590  } else if (const CXXBaseObjectRegion *BaseReg =
1591  dyn_cast<CXXBaseObjectRegion>(R)) {
1592  // C++ base object region is another kind of region that we should blast
1593  // through to look for lazy compound value. It is like a field region.
1594  Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1595  originalRegion);
1596 
1597  if (Result.second)
1598  Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1599  Result.second);
1600  }
1601 
1602  return Result;
1603 }
1604 
1605 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1606 ///
1607 /// Return an array of extents of the declared array type.
1608 ///
1609 /// E.g. for `int x[1][2][3];` returns { 1, 2, 3 }.
1612  assert(CAT && "ConstantArrayType should not be null");
1613  CAT = cast<ConstantArrayType>(CAT->getCanonicalTypeInternal());
1614  SmallVector<uint64_t, 2> Extents;
1615  do {
1616  Extents.push_back(CAT->getZExtSize());
1617  } while ((CAT = dyn_cast<ConstantArrayType>(CAT->getElementType())));
1618  return Extents;
1619 }
1620 
1621 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1622 ///
1623 /// Return an array of offsets from nested ElementRegions and a root base
1624 /// region. The array is never empty and a base region is never null.
1625 ///
1626 /// E.g. for `Element{Element{Element{VarRegion},1},2},3}` returns { 3, 2, 1 }.
1627 /// This represents an access through indirection: `arr[1][2][3];`
1628 ///
1629 /// \param ER The given (possibly nested) ElementRegion.
1630 ///
1631 /// \note The result array is in the reverse order of indirection expression:
1632 /// arr[1][2][3] -> { 3, 2, 1 }. This helps to provide complexity O(n), where n
1633 /// is a number of indirections. It may not affect performance in real-life
1634 /// code, though.
1635 static std::pair<SmallVector<SVal, 2>, const MemRegion *>
1637  assert(ER && "ConstantArrayType should not be null");
1638  const MemRegion *Base;
1639  SmallVector<SVal, 2> SValOffsets;
1640  do {
1641  SValOffsets.push_back(ER->getIndex());
1642  Base = ER->getSuperRegion();
1643  ER = dyn_cast<ElementRegion>(Base);
1644  } while (ER);
1645  return {SValOffsets, Base};
1646 }
1647 
1648 /// This is a helper function for `getConstantValFromConstArrayInitializer`.
1649 ///
1650 /// Convert array of offsets from `SVal` to `uint64_t` in consideration of
1651 /// respective array extents.
1652 /// \param SrcOffsets [in] The array of offsets of type `SVal` in reversed
1653 /// order (expectedly received from `getElementRegionOffsetsWithBase`).
1654 /// \param ArrayExtents [in] The array of extents.
1655 /// \param DstOffsets [out] The array of offsets of type `uint64_t`.
1656 /// \returns:
1657 /// - `std::nullopt` for successful convertion.
1658 /// - `UndefinedVal` or `UnknownVal` otherwise. It's expected that this SVal
1659 /// will be returned as a suitable value of the access operation.
1660 /// which should be returned as a correct
1661 ///
1662 /// \example:
1663 /// const int arr[10][20][30] = {}; // ArrayExtents { 10, 20, 30 }
1664 /// int x1 = arr[4][5][6]; // SrcOffsets { NonLoc(6), NonLoc(5), NonLoc(4) }
1665 /// // DstOffsets { 4, 5, 6 }
1666 /// // returns std::nullopt
1667 /// int x2 = arr[42][5][-6]; // returns UndefinedVal
1668 /// int x3 = arr[4][5][x2]; // returns UnknownVal
1669 static std::optional<SVal>
1671  const SmallVector<uint64_t, 2> ArrayExtents,
1672  SmallVector<uint64_t, 2> &DstOffsets) {
1673  // Check offsets for being out of bounds.
1674  // C++20 [expr.add] 7.6.6.4 (excerpt):
1675  // If P points to an array element i of an array object x with n
1676  // elements, where i < 0 or i > n, the behavior is undefined.
1677  // Dereferencing is not allowed on the "one past the last
1678  // element", when i == n.
1679  // Example:
1680  // const int arr[3][2] = {{1, 2}, {3, 4}};
1681  // arr[0][0]; // 1
1682  // arr[0][1]; // 2
1683  // arr[0][2]; // UB
1684  // arr[1][0]; // 3
1685  // arr[1][1]; // 4
1686  // arr[1][-1]; // UB
1687  // arr[2][0]; // 0
1688  // arr[2][1]; // 0
1689  // arr[-2][0]; // UB
1690  DstOffsets.resize(SrcOffsets.size());
1691  auto ExtentIt = ArrayExtents.begin();
1692  auto OffsetIt = DstOffsets.begin();
1693  // Reverse `SValOffsets` to make it consistent with `ArrayExtents`.
1694  for (SVal V : llvm::reverse(SrcOffsets)) {
1695  if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1696  // When offset is out of array's bounds, result is UB.
1697  const llvm::APSInt &Offset = CI->getValue();
1698  if (Offset.isNegative() || Offset.uge(*(ExtentIt++)))
1699  return UndefinedVal();
1700  // Store index in a reversive order.
1701  *(OffsetIt++) = Offset.getZExtValue();
1702  continue;
1703  }
1704  // Symbolic index presented. Return Unknown value.
1705  // FIXME: We also need to take ElementRegions with symbolic indexes into
1706  // account.
1707  return UnknownVal();
1708  }
1709  return std::nullopt;
1710 }
1711 
1712 std::optional<SVal> RegionStoreManager::getConstantValFromConstArrayInitializer(
1713  RegionBindingsConstRef B, const ElementRegion *R) {
1714  assert(R && "ElementRegion should not be null");
1715 
1716  // Treat an n-dimensional array.
1717  SmallVector<SVal, 2> SValOffsets;
1718  const MemRegion *Base;
1719  std::tie(SValOffsets, Base) = getElementRegionOffsetsWithBase(R);
1720  const VarRegion *VR = dyn_cast<VarRegion>(Base);
1721  if (!VR)
1722  return std::nullopt;
1723 
1724  assert(!SValOffsets.empty() && "getElementRegionOffsets guarantees the "
1725  "offsets vector is not empty.");
1726 
1727  // Check if the containing array has an initialized value that we can trust.
1728  // We can trust a const value or a value of a global initializer in main().
1729  const VarDecl *VD = VR->getDecl();
1730  if (!VD->getType().isConstQualified() &&
1731  !R->getElementType().isConstQualified() &&
1732  (!B.isMainAnalysis() || !VD->hasGlobalStorage()))
1733  return std::nullopt;
1734 
1735  // Array's declaration should have `ConstantArrayType` type, because only this
1736  // type contains an array extent. It may happen that array type can be of
1737  // `IncompleteArrayType` type. To get the declaration of `ConstantArrayType`
1738  // type, we should find the declaration in the redeclarations chain that has
1739  // the initialization expression.
1740  // NOTE: `getAnyInitializer` has an out-parameter, which returns a new `VD`
1741  // from which an initializer is obtained. We replace current `VD` with the new
1742  // `VD`. If the return value of the function is null than `VD` won't be
1743  // replaced.
1744  const Expr *Init = VD->getAnyInitializer(VD);
1745  // NOTE: If `Init` is non-null, then a new `VD` is non-null for sure. So check
1746  // `Init` for null only and don't worry about the replaced `VD`.
1747  if (!Init)
1748  return std::nullopt;
1749 
1750  // Array's declaration should have ConstantArrayType type, because only this
1751  // type contains an array extent.
1752  const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(VD->getType());
1753  if (!CAT)
1754  return std::nullopt;
1755 
1756  // Get array extents.
1758 
1759  // The number of offsets should equal to the numbers of extents,
1760  // otherwise wrong type punning occurred. For instance:
1761  // int arr[1][2][3];
1762  // auto ptr = (int(*)[42])arr;
1763  // auto x = ptr[4][2]; // UB
1764  // FIXME: Should return UndefinedVal.
1765  if (SValOffsets.size() != Extents.size())
1766  return std::nullopt;
1767 
1768  SmallVector<uint64_t, 2> ConcreteOffsets;
1769  if (std::optional<SVal> V = convertOffsetsFromSvalToUnsigneds(
1770  SValOffsets, Extents, ConcreteOffsets))
1771  return *V;
1772 
1773  // Handle InitListExpr.
1774  // Example:
1775  // const char arr[4][2] = { { 1, 2 }, { 3 }, 4, 5 };
1776  if (const auto *ILE = dyn_cast<InitListExpr>(Init))
1777  return getSValFromInitListExpr(ILE, ConcreteOffsets, R->getElementType());
1778 
1779  // Handle StringLiteral.
1780  // Example:
1781  // const char arr[] = "abc";
1782  if (const auto *SL = dyn_cast<StringLiteral>(Init))
1783  return getSValFromStringLiteral(SL, ConcreteOffsets.front(),
1784  R->getElementType());
1785 
1786  // FIXME: Handle CompoundLiteralExpr.
1787 
1788  return std::nullopt;
1789 }
1790 
1791 /// Returns an SVal, if possible, for the specified position of an
1792 /// initialization list.
1793 ///
1794 /// \param ILE The given initialization list.
1795 /// \param Offsets The array of unsigned offsets. E.g. for the expression
1796 /// `int x = arr[1][2][3];` an array should be { 1, 2, 3 }.
1797 /// \param ElemT The type of the result SVal expression.
1798 /// \return Optional SVal for the particular position in the initialization
1799 /// list. E.g. for the list `{{1, 2},[3, 4],{5, 6}, {}}` offsets:
1800 /// - {1, 1} returns SVal{4}, because it's the second position in the second
1801 /// sublist;
1802 /// - {3, 0} returns SVal{0}, because there's no explicit value at this
1803 /// position in the sublist.
1804 ///
1805 /// NOTE: Inorder to get a valid SVal, a caller shall guarantee valid offsets
1806 /// for the given initialization list. Otherwise SVal can be an equivalent to 0
1807 /// or lead to assertion.
1808 std::optional<SVal> RegionStoreManager::getSValFromInitListExpr(
1809  const InitListExpr *ILE, const SmallVector<uint64_t, 2> &Offsets,
1810  QualType ElemT) {
1811  assert(ILE && "InitListExpr should not be null");
1812 
1813  for (uint64_t Offset : Offsets) {
1814  // C++20 [dcl.init.string] 9.4.2.1:
1815  // An array of ordinary character type [...] can be initialized by [...]
1816  // an appropriately-typed string-literal enclosed in braces.
1817  // Example:
1818  // const char arr[] = { "abc" };
1819  if (ILE->isStringLiteralInit())
1820  if (const auto *SL = dyn_cast<StringLiteral>(ILE->getInit(0)))
1821  return getSValFromStringLiteral(SL, Offset, ElemT);
1822 
1823  // C++20 [expr.add] 9.4.17.5 (excerpt):
1824  // i-th array element is value-initialized for each k < i ≤ n,
1825  // where k is an expression-list size and n is an array extent.
1826  if (Offset >= ILE->getNumInits())
1827  return svalBuilder.makeZeroVal(ElemT);
1828 
1829  const Expr *E = ILE->getInit(Offset);
1830  const auto *IL = dyn_cast<InitListExpr>(E);
1831  if (!IL)
1832  // Return a constant value, if it is presented.
1833  // FIXME: Support other SVals.
1834  return svalBuilder.getConstantVal(E);
1835 
1836  // Go to the nested initializer list.
1837  ILE = IL;
1838  }
1839 
1840  assert(ILE);
1841 
1842  // FIXME: Unhandeled InitListExpr sub-expression, possibly constructing an
1843  // enum?
1844  return std::nullopt;
1845 }
1846 
1847 /// Returns an SVal, if possible, for the specified position in a string
1848 /// literal.
1849 ///
1850 /// \param SL The given string literal.
1851 /// \param Offset The unsigned offset. E.g. for the expression
1852 /// `char x = str[42];` an offset should be 42.
1853 /// E.g. for the string "abc" offset:
1854 /// - 1 returns SVal{b}, because it's the second position in the string.
1855 /// - 42 returns SVal{0}, because there's no explicit value at this
1856 /// position in the string.
1857 /// \param ElemT The type of the result SVal expression.
1858 ///
1859 /// NOTE: We return `0` for every offset >= the literal length for array
1860 /// declarations, like:
1861 /// const char str[42] = "123"; // Literal length is 4.
1862 /// char c = str[41]; // Offset is 41.
1863 /// FIXME: Nevertheless, we can't do the same for pointer declaraions, like:
1864 /// const char * const str = "123"; // Literal length is 4.
1865 /// char c = str[41]; // Offset is 41. Returns `0`, but Undef
1866 /// // expected.
1867 /// It should be properly handled before reaching this point.
1868 /// The main problem is that we can't distinguish between these declarations,
1869 /// because in case of array we can get the Decl from VarRegion, but in case
1870 /// of pointer the region is a StringRegion, which doesn't contain a Decl.
1871 /// Possible solution could be passing an array extent along with the offset.
1872 SVal RegionStoreManager::getSValFromStringLiteral(const StringLiteral *SL,
1873  uint64_t Offset,
1874  QualType ElemT) {
1875  assert(SL && "StringLiteral should not be null");
1876  // C++20 [dcl.init.string] 9.4.2.3:
1877  // If there are fewer initializers than there are array elements, each
1878  // element not explicitly initialized shall be zero-initialized [dcl.init].
1879  uint32_t Code = (Offset >= SL->getLength()) ? 0 : SL->getCodeUnit(Offset);
1880  return svalBuilder.makeIntVal(Code, ElemT);
1881 }
1882 
1883 static std::optional<SVal> getDerivedSymbolForBinding(
1884  RegionBindingsConstRef B, const TypedValueRegion *BaseRegion,
1885  const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB) {
1886  assert(BaseRegion);
1887  QualType BaseTy = BaseRegion->getValueType();
1888  QualType Ty = SubReg->getValueType();
1889  if (BaseTy->isScalarType() && Ty->isScalarType()) {
1890  if (Ctx.getTypeSizeInChars(BaseTy) >= Ctx.getTypeSizeInChars(Ty)) {
1891  if (const std::optional<SVal> &ParentValue =
1892  B.getDirectBinding(BaseRegion)) {
1893  if (SymbolRef ParentValueAsSym = ParentValue->getAsSymbol())
1894  return SVB.getDerivedRegionValueSymbolVal(ParentValueAsSym, SubReg);
1895 
1896  if (ParentValue->isUndef())
1897  return UndefinedVal();
1898 
1899  // Other cases: give up. We are indexing into a larger object
1900  // that has some value, but we don't know how to handle that yet.
1901  return UnknownVal();
1902  }
1903  }
1904  }
1905  return std::nullopt;
1906 }
1907 
1908 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1909  const ElementRegion* R) {
1910  // Check if the region has a binding.
1911  if (const std::optional<SVal> &V = B.getDirectBinding(R))
1912  return *V;
1913 
1914  const MemRegion* superR = R->getSuperRegion();
1915 
1916  // Check if the region is an element region of a string literal.
1917  if (const StringRegion *StrR = dyn_cast<StringRegion>(superR)) {
1918  // FIXME: Handle loads from strings where the literal is treated as
1919  // an integer, e.g., *((unsigned int*)"hello"). Such loads are UB according
1920  // to C++20 7.2.1.11 [basic.lval].
1921  QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1922  if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1923  return UnknownVal();
1924  if (const auto CI = R->getIndex().getAs<nonloc::ConcreteInt>()) {
1925  const llvm::APSInt &Idx = CI->getValue();
1926  if (Idx < 0)
1927  return UndefinedVal();
1928  const StringLiteral *SL = StrR->getStringLiteral();
1929  return getSValFromStringLiteral(SL, Idx.getZExtValue(), T);
1930  }
1931  } else if (isa<ElementRegion, VarRegion>(superR)) {
1932  if (std::optional<SVal> V = getConstantValFromConstArrayInitializer(B, R))
1933  return *V;
1934  }
1935 
1936  // Check for loads from a code text region. For such loads, just give up.
1937  if (isa<CodeTextRegion>(superR))
1938  return UnknownVal();
1939 
1940  // Handle the case where we are indexing into a larger scalar object.
1941  // For example, this handles:
1942  // int x = ...
1943  // char *y = &x;
1944  // return *y;
1945  // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1946  const RegionRawOffset &O = R->getAsArrayOffset();
1947 
1948  // If we cannot reason about the offset, return an unknown value.
1949  if (!O.getRegion())
1950  return UnknownVal();
1951 
1952  if (const TypedValueRegion *baseR = dyn_cast<TypedValueRegion>(O.getRegion()))
1953  if (auto V = getDerivedSymbolForBinding(B, baseR, R, Ctx, svalBuilder))
1954  return *V;
1955 
1956  return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1957 }
1958 
1959 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1960  const FieldRegion* R) {
1961 
1962  // Check if the region has a binding.
1963  if (const std::optional<SVal> &V = B.getDirectBinding(R))
1964  return *V;
1965 
1966  // If the containing record was initialized, try to get its constant value.
1967  const FieldDecl *FD = R->getDecl();
1968  QualType Ty = FD->getType();
1969  const MemRegion* superR = R->getSuperRegion();
1970  if (const auto *VR = dyn_cast<VarRegion>(superR)) {
1971  const VarDecl *VD = VR->getDecl();
1972  QualType RecordVarTy = VD->getType();
1973  unsigned Index = FD->getFieldIndex();
1974  // Either the record variable or the field has an initializer that we can
1975  // trust. We trust initializers of constants and, additionally, respect
1976  // initializers of globals when analyzing main().
1977  if (RecordVarTy.isConstQualified() || Ty.isConstQualified() ||
1978  (B.isMainAnalysis() && VD->hasGlobalStorage()))
1979  if (const Expr *Init = VD->getAnyInitializer())
1980  if (const auto *InitList = dyn_cast<InitListExpr>(Init)) {
1981  if (Index < InitList->getNumInits()) {
1982  if (const Expr *FieldInit = InitList->getInit(Index))
1983  if (std::optional<SVal> V = svalBuilder.getConstantVal(FieldInit))
1984  return *V;
1985  } else {
1986  return svalBuilder.makeZeroVal(Ty);
1987  }
1988  }
1989  }
1990 
1991  // Handle the case where we are accessing into a larger scalar object.
1992  // For example, this handles:
1993  // struct header {
1994  // unsigned a : 1;
1995  // unsigned b : 1;
1996  // };
1997  // struct parse_t {
1998  // unsigned bits0 : 1;
1999  // unsigned bits2 : 2; // <-- header
2000  // unsigned bits4 : 4;
2001  // };
2002  // int parse(parse_t *p) {
2003  // unsigned copy = p->bits2;
2004  // header *bits = (header *)&copy;
2005  // return bits->b; <-- here
2006  // }
2007  if (const auto *Base = dyn_cast<TypedValueRegion>(R->getBaseRegion()))
2008  if (auto V = getDerivedSymbolForBinding(B, Base, R, Ctx, svalBuilder))
2009  return *V;
2010 
2011  return getBindingForFieldOrElementCommon(B, R, Ty);
2012 }
2013 
2014 std::optional<SVal> RegionStoreManager::getBindingForDerivedDefaultValue(
2015  RegionBindingsConstRef B, const MemRegion *superR,
2016  const TypedValueRegion *R, QualType Ty) {
2017 
2018  if (const std::optional<SVal> &D = B.getDefaultBinding(superR)) {
2019  SVal val = *D;
2020  if (SymbolRef parentSym = val.getAsSymbol())
2021  return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2022 
2023  if (val.isZeroConstant())
2024  return svalBuilder.makeZeroVal(Ty);
2025 
2026  if (val.isUnknownOrUndef())
2027  return val;
2028 
2029  // Lazy bindings are usually handled through getExistingLazyBinding().
2030  // We should unify these two code paths at some point.
2031  if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(val))
2032  return val;
2033 
2034  llvm_unreachable("Unknown default value");
2035  }
2036 
2037  return std::nullopt;
2038 }
2039 
2040 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
2041  RegionBindingsRef LazyBinding) {
2042  SVal Result;
2043  if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
2044  Result = getBindingForElement(LazyBinding, ER);
2045  else
2046  Result = getBindingForField(LazyBinding,
2047  cast<FieldRegion>(LazyBindingRegion));
2048 
2049  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2050  // default value for /part/ of an aggregate from a default value for the
2051  // /entire/ aggregate. The most common case of this is when struct Outer
2052  // has as its first member a struct Inner, which is copied in from a stack
2053  // variable. In this case, even if the Outer's default value is symbolic, 0,
2054  // or unknown, it gets overridden by the Inner's default value of undefined.
2055  //
2056  // This is a general problem -- if the Inner is zero-initialized, the Outer
2057  // will now look zero-initialized. The proper way to solve this is with a
2058  // new version of RegionStore that tracks the extent of a binding as well
2059  // as the offset.
2060  //
2061  // This hack only takes care of the undefined case because that can very
2062  // quickly result in a warning.
2063  if (Result.isUndef())
2064  Result = UnknownVal();
2065 
2066  return Result;
2067 }
2068 
2069 SVal
2070 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
2071  const TypedValueRegion *R,
2072  QualType Ty) {
2073 
2074  // At this point we have already checked in either getBindingForElement or
2075  // getBindingForField if 'R' has a direct binding.
2076 
2077  // Lazy binding?
2078  Store lazyBindingStore = nullptr;
2079  const SubRegion *lazyBindingRegion = nullptr;
2080  std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
2081  if (lazyBindingRegion)
2082  return getLazyBinding(lazyBindingRegion,
2083  getRegionBindings(lazyBindingStore));
2084 
2085  // Record whether or not we see a symbolic index. That can completely
2086  // be out of scope of our lookup.
2087  bool hasSymbolicIndex = false;
2088 
2089  // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
2090  // default value for /part/ of an aggregate from a default value for the
2091  // /entire/ aggregate. The most common case of this is when struct Outer
2092  // has as its first member a struct Inner, which is copied in from a stack
2093  // variable. In this case, even if the Outer's default value is symbolic, 0,
2094  // or unknown, it gets overridden by the Inner's default value of undefined.
2095  //
2096  // This is a general problem -- if the Inner is zero-initialized, the Outer
2097  // will now look zero-initialized. The proper way to solve this is with a
2098  // new version of RegionStore that tracks the extent of a binding as well
2099  // as the offset.
2100  //
2101  // This hack only takes care of the undefined case because that can very
2102  // quickly result in a warning.
2103  bool hasPartialLazyBinding = false;
2104 
2105  const SubRegion *SR = R;
2106  while (SR) {
2107  const MemRegion *Base = SR->getSuperRegion();
2108  if (std::optional<SVal> D =
2109  getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
2110  if (D->getAs<nonloc::LazyCompoundVal>()) {
2111  hasPartialLazyBinding = true;
2112  break;
2113  }
2114 
2115  return *D;
2116  }
2117 
2118  if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
2119  NonLoc index = ER->getIndex();
2120  if (!index.isConstant())
2121  hasSymbolicIndex = true;
2122  }
2123 
2124  // If our super region is a field or element itself, walk up the region
2125  // hierarchy to see if there is a default value installed in an ancestor.
2126  SR = dyn_cast<SubRegion>(Base);
2127  }
2128 
2129  if (R->hasStackNonParametersStorage()) {
2130  if (isa<ElementRegion>(R)) {
2131  // Currently we don't reason specially about Clang-style vectors. Check
2132  // if superR is a vector and if so return Unknown.
2133  if (const TypedValueRegion *typedSuperR =
2134  dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
2135  if (typedSuperR->getValueType()->isVectorType())
2136  return UnknownVal();
2137  }
2138  }
2139 
2140  // FIXME: We also need to take ElementRegions with symbolic indexes into
2141  // account. This case handles both directly accessing an ElementRegion
2142  // with a symbolic offset, but also fields within an element with
2143  // a symbolic offset.
2144  if (hasSymbolicIndex)
2145  return UnknownVal();
2146 
2147  // Additionally allow introspection of a block's internal layout.
2148  // Try to get direct binding if all other attempts failed thus far.
2149  // Else, return UndefinedVal()
2150  if (!hasPartialLazyBinding && !isa<BlockDataRegion>(R->getBaseRegion())) {
2151  if (const std::optional<SVal> &V = B.getDefaultBinding(R))
2152  return *V;
2153  return UndefinedVal();
2154  }
2155  }
2156 
2157  // All other values are symbolic.
2158  return svalBuilder.getRegionValueSymbolVal(R);
2159 }
2160 
2161 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
2162  const ObjCIvarRegion* R) {
2163  // Check if the region has a binding.
2164  if (const std::optional<SVal> &V = B.getDirectBinding(R))
2165  return *V;
2166 
2167  const MemRegion *superR = R->getSuperRegion();
2168 
2169  // Check if the super region has a default binding.
2170  if (const std::optional<SVal> &V = B.getDefaultBinding(superR)) {
2171  if (SymbolRef parentSym = V->getAsSymbol())
2172  return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
2173 
2174  // Other cases: give up.
2175  return UnknownVal();
2176  }
2177 
2178  return getBindingForLazySymbol(R);
2179 }
2180 
2181 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
2182  const VarRegion *R) {
2183 
2184  // Check if the region has a binding.
2185  if (std::optional<SVal> V = B.getDirectBinding(R))
2186  return *V;
2187 
2188  if (std::optional<SVal> V = B.getDefaultBinding(R))
2189  return *V;
2190 
2191  // Lazily derive a value for the VarRegion.
2192  const VarDecl *VD = R->getDecl();
2193  const MemSpaceRegion *MS = R->getMemorySpace();
2194 
2195  // Arguments are always symbolic.
2196  if (isa<StackArgumentsSpaceRegion>(MS))
2197  return svalBuilder.getRegionValueSymbolVal(R);
2198 
2199  // Is 'VD' declared constant? If so, retrieve the constant value.
2200  if (VD->getType().isConstQualified()) {
2201  if (const Expr *Init = VD->getAnyInitializer()) {
2202  if (std::optional<SVal> V = svalBuilder.getConstantVal(Init))
2203  return *V;
2204 
2205  // If the variable is const qualified and has an initializer but
2206  // we couldn't evaluate initializer to a value, treat the value as
2207  // unknown.
2208  return UnknownVal();
2209  }
2210  }
2211 
2212  // This must come after the check for constants because closure-captured
2213  // constant variables may appear in UnknownSpaceRegion.
2214  if (isa<UnknownSpaceRegion>(MS))
2215  return svalBuilder.getRegionValueSymbolVal(R);
2216 
2217  if (isa<GlobalsSpaceRegion>(MS)) {
2218  QualType T = VD->getType();
2219 
2220  // If we're in main(), then global initializers have not become stale yet.
2221  if (B.isMainAnalysis())
2222  if (const Expr *Init = VD->getAnyInitializer())
2223  if (std::optional<SVal> V = svalBuilder.getConstantVal(Init))
2224  return *V;
2225 
2226  // Function-scoped static variables are default-initialized to 0; if they
2227  // have an initializer, it would have been processed by now.
2228  // FIXME: This is only true when we're starting analysis from main().
2229  // We're losing a lot of coverage here.
2230  if (isa<StaticGlobalSpaceRegion>(MS))
2231  return svalBuilder.makeZeroVal(T);
2232 
2233  if (std::optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
2234  assert(!V->getAs<nonloc::LazyCompoundVal>());
2235  return *V;
2236  }
2237 
2238  return svalBuilder.getRegionValueSymbolVal(R);
2239  }
2240 
2241  return UndefinedVal();
2242 }
2243 
2244 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
2245  // All other values are symbolic.
2246  return svalBuilder.getRegionValueSymbolVal(R);
2247 }
2248 
2249 const RegionStoreManager::SValListTy &
2250 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
2251  // First, check the cache.
2252  LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
2253  if (I != LazyBindingsMap.end())
2254  return I->second;
2255 
2256  // If we don't have a list of values cached, start constructing it.
2257  SValListTy List;
2258 
2259  const SubRegion *LazyR = LCV.getRegion();
2260  RegionBindingsRef B = getRegionBindings(LCV.getStore());
2261 
2262  // If this region had /no/ bindings at the time, there are no interesting
2263  // values to return.
2264  const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
2265  if (!Cluster)
2266  return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2267 
2269  collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
2270  /*IncludeAllDefaultBindings=*/true);
2271  for (SVal V : llvm::make_second_range(Bindings)) {
2272  if (V.isUnknownOrUndef() || V.isConstant())
2273  continue;
2274 
2275  if (auto InnerLCV = V.getAs<nonloc::LazyCompoundVal>()) {
2276  const SValListTy &InnerList = getInterestingValues(*InnerLCV);
2277  List.insert(List.end(), InnerList.begin(), InnerList.end());
2278  }
2279 
2280  List.push_back(V);
2281  }
2282 
2283  return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
2284 }
2285 
2286 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
2287  const TypedValueRegion *R) {
2288  if (std::optional<nonloc::LazyCompoundVal> V =
2289  getExistingLazyBinding(svalBuilder, B, R, false))
2290  return *V;
2291 
2292  return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
2293 }
2294 
2295 static bool isRecordEmpty(const RecordDecl *RD) {
2296  if (!RD->field_empty())
2297  return false;
2298  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
2299  return CRD->getNumBases() == 0;
2300  return true;
2301 }
2302 
2303 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
2304  const TypedValueRegion *R) {
2305  const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
2306  if (!RD->getDefinition() || isRecordEmpty(RD))
2307  return UnknownVal();
2308 
2309  return createLazyBinding(B, R);
2310 }
2311 
2312 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
2313  const TypedValueRegion *R) {
2314  assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
2315  "Only constant array types can have compound bindings.");
2316 
2317  return createLazyBinding(B, R);
2318 }
2319 
2320 bool RegionStoreManager::includedInBindings(Store store,
2321  const MemRegion *region) const {
2322  RegionBindingsRef B = getRegionBindings(store);
2323  region = region->getBaseRegion();
2324 
2325  // Quick path: if the base is the head of a cluster, the region is live.
2326  if (B.lookup(region))
2327  return true;
2328 
2329  // Slow path: if the region is the VALUE of any binding, it is live.
2330  for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
2331  const ClusterBindings &Cluster = RI.getData();
2332  for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2333  CI != CE; ++CI) {
2334  SVal D = CI.getData();
2335  if (const MemRegion *R = D.getAsRegion())
2336  if (R->getBaseRegion() == region)
2337  return true;
2338  }
2339  }
2340 
2341  return false;
2342 }
2343 
2344 //===----------------------------------------------------------------------===//
2345 // Binding values to regions.
2346 //===----------------------------------------------------------------------===//
2347 
2348 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
2349  if (std::optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
2350  if (const MemRegion* R = LV->getRegion())
2351  return StoreRef(getRegionBindings(ST).removeBinding(R)
2352  .asImmutableMap()
2353  .getRootWithoutRetain(),
2354  *this);
2355 
2356  return StoreRef(ST, *this);
2357 }
2358 
2359 RegionBindingsRef
2360 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
2361  // We only care about region locations.
2362  auto MemRegVal = L.getAs<loc::MemRegionVal>();
2363  if (!MemRegVal)
2364  return B;
2365 
2366  const MemRegion *R = MemRegVal->getRegion();
2367 
2368  // Check if the region is a struct region.
2369  if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
2370  QualType Ty = TR->getValueType();
2371  if (Ty->isArrayType())
2372  return bindArray(B, TR, V);
2373  if (Ty->isStructureOrClassType())
2374  return bindStruct(B, TR, V);
2375  if (Ty->isVectorType())
2376  return bindVector(B, TR, V);
2377  if (Ty->isUnionType())
2378  return bindAggregate(B, TR, V);
2379  }
2380 
2381  // Binding directly to a symbolic region should be treated as binding
2382  // to element 0.
2383  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
2384  R = GetElementZeroRegion(SR, SR->getPointeeStaticType());
2385 
2386  assert((!isa<CXXThisRegion>(R) || !B.lookup(R)) &&
2387  "'this' pointer is not an l-value and is not assignable");
2388 
2389  // Clear out bindings that may overlap with this binding.
2390  RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
2391 
2392  // LazyCompoundVals should be always bound as 'default' bindings.
2393  auto KeyKind = isa<nonloc::LazyCompoundVal>(V) ? BindingKey::Default
2394  : BindingKey::Direct;
2395  return NewB.addBinding(BindingKey::Make(R, KeyKind), V);
2396 }
2397 
2398 RegionBindingsRef
2399 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
2400  const MemRegion *R,
2401  QualType T) {
2402  SVal V;
2403 
2404  if (Loc::isLocType(T))
2405  V = svalBuilder.makeNullWithType(T);
2406  else if (T->isIntegralOrEnumerationType())
2407  V = svalBuilder.makeZeroVal(T);
2408  else if (T->isStructureOrClassType() || T->isArrayType()) {
2409  // Set the default value to a zero constant when it is a structure
2410  // or array. The type doesn't really matter.
2411  V = svalBuilder.makeZeroVal(Ctx.IntTy);
2412  }
2413  else {
2414  // We can't represent values of this type, but we still need to set a value
2415  // to record that the region has been initialized.
2416  // If this assertion ever fires, a new case should be added above -- we
2417  // should know how to default-initialize any value we can symbolicate.
2418  assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
2419  V = UnknownVal();
2420  }
2421 
2422  return B.addBinding(R, BindingKey::Default, V);
2423 }
2424 
2425 std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallArray(
2426  RegionBindingsConstRef B, const TypedValueRegion *R, const ArrayType *AT,
2428 
2429  auto CAT = dyn_cast<ConstantArrayType>(AT);
2430 
2431  // If we don't know the size, create a lazyCompoundVal instead.
2432  if (!CAT)
2433  return std::nullopt;
2434 
2435  QualType Ty = CAT->getElementType();
2436  if (!(Ty->isScalarType() || Ty->isReferenceType()))
2437  return std::nullopt;
2438 
2439  // If the array is too big, create a LCV instead.
2440  uint64_t ArrSize = CAT->getLimitedSize();
2441  if (ArrSize > SmallArrayLimit)
2442  return std::nullopt;
2443 
2444  RegionBindingsRef NewB = B;
2445 
2446  for (uint64_t i = 0; i < ArrSize; ++i) {
2447  auto Idx = svalBuilder.makeArrayIndex(i);
2448  const ElementRegion *SrcER =
2449  MRMgr.getElementRegion(Ty, Idx, LCV.getRegion(), Ctx);
2450  SVal V = getBindingForElement(getRegionBindings(LCV.getStore()), SrcER);
2451 
2452  const ElementRegion *DstER = MRMgr.getElementRegion(Ty, Idx, R, Ctx);
2453  NewB = bind(NewB, loc::MemRegionVal(DstER), V);
2454  }
2455 
2456  return NewB;
2457 }
2458 
2459 RegionBindingsRef
2460 RegionStoreManager::bindArray(RegionBindingsConstRef B,
2461  const TypedValueRegion* R,
2462  SVal Init) {
2463 
2464  const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
2465  QualType ElementTy = AT->getElementType();
2466  std::optional<uint64_t> Size;
2467 
2468  if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
2469  Size = CAT->getZExtSize();
2470 
2471  // Check if the init expr is a literal. If so, bind the rvalue instead.
2472  // FIXME: It's not responsibility of the Store to transform this lvalue
2473  // to rvalue. ExprEngine or maybe even CFG should do this before binding.
2474  if (std::optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
2475  SVal V = getBinding(B.asStore(), *MRV, R->getValueType());
2476  return bindAggregate(B, R, V);
2477  }
2478 
2479  // Handle lazy compound values.
2480  if (std::optional<nonloc::LazyCompoundVal> LCV =
2481  Init.getAs<nonloc::LazyCompoundVal>()) {
2482  if (std::optional<RegionBindingsRef> NewB =
2483  tryBindSmallArray(B, R, AT, *LCV))
2484  return *NewB;
2485 
2486  return bindAggregate(B, R, Init);
2487  }
2488 
2489  if (Init.isUnknown())
2490  return bindAggregate(B, R, UnknownVal());
2491 
2492  // Remaining case: explicit compound values.
2493  const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
2494  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2495  uint64_t i = 0;
2496 
2497  RegionBindingsRef NewB(B);
2498 
2499  for (; Size ? i < *Size : true; ++i, ++VI) {
2500  // The init list might be shorter than the array length.
2501  if (VI == VE)
2502  break;
2503 
2504  NonLoc Idx = svalBuilder.makeArrayIndex(i);
2505  const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
2506 
2507  if (ElementTy->isStructureOrClassType())
2508  NewB = bindStruct(NewB, ER, *VI);
2509  else if (ElementTy->isArrayType())
2510  NewB = bindArray(NewB, ER, *VI);
2511  else
2512  NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2513  }
2514 
2515  // If the init list is shorter than the array length (or the array has
2516  // variable length), set the array default value. Values that are already set
2517  // are not overwritten.
2518  if (!Size || i < *Size)
2519  NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2520 
2521  return NewB;
2522 }
2523 
2524 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2525  const TypedValueRegion* R,
2526  SVal V) {
2527  QualType T = R->getValueType();
2528  const VectorType *VT = T->castAs<VectorType>(); // Use castAs for typedefs.
2529 
2530  // Handle lazy compound values and symbolic values.
2531  if (isa<nonloc::LazyCompoundVal, nonloc::SymbolVal>(V))
2532  return bindAggregate(B, R, V);
2533 
2534  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2535  // that we are binding symbolic struct value. Kill the field values, and if
2536  // the value is symbolic go and bind it as a "default" binding.
2537  if (!isa<nonloc::CompoundVal>(V)) {
2538  return bindAggregate(B, R, UnknownVal());
2539  }
2540 
2541  QualType ElemType = VT->getElementType();
2542  nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2543  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2544  unsigned index = 0, numElements = VT->getNumElements();
2545  RegionBindingsRef NewB(B);
2546 
2547  for ( ; index != numElements ; ++index) {
2548  if (VI == VE)
2549  break;
2550 
2551  NonLoc Idx = svalBuilder.makeArrayIndex(index);
2552  const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2553 
2554  if (ElemType->isArrayType())
2555  NewB = bindArray(NewB, ER, *VI);
2556  else if (ElemType->isStructureOrClassType())
2557  NewB = bindStruct(NewB, ER, *VI);
2558  else
2559  NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2560  }
2561  return NewB;
2562 }
2563 
2564 std::optional<RegionBindingsRef> RegionStoreManager::tryBindSmallStruct(
2565  RegionBindingsConstRef B, const TypedValueRegion *R, const RecordDecl *RD,
2567  FieldVector Fields;
2568 
2569  if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2570  if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2571  return std::nullopt;
2572 
2573  for (const auto *FD : RD->fields()) {
2574  if (FD->isUnnamedBitField())
2575  continue;
2576 
2577  // If there are too many fields, or if any of the fields are aggregates,
2578  // just use the LCV as a default binding.
2579  if (Fields.size() == SmallStructLimit)
2580  return std::nullopt;
2581 
2582  QualType Ty = FD->getType();
2583 
2584  // Zero length arrays are basically no-ops, so we also ignore them here.
2585  if (Ty->isConstantArrayType() &&
2587  continue;
2588 
2589  if (!(Ty->isScalarType() || Ty->isReferenceType()))
2590  return std::nullopt;
2591 
2592  Fields.push_back(FD);
2593  }
2594 
2595  RegionBindingsRef NewB = B;
2596 
2597  for (const FieldDecl *Field : Fields) {
2598  const FieldRegion *SourceFR = MRMgr.getFieldRegion(Field, LCV.getRegion());
2599  SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2600 
2601  const FieldRegion *DestFR = MRMgr.getFieldRegion(Field, R);
2602  NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2603  }
2604 
2605  return NewB;
2606 }
2607 
2608 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2609  const TypedValueRegion *R,
2610  SVal V) {
2611  QualType T = R->getValueType();
2612  assert(T->isStructureOrClassType());
2613 
2614  const RecordType* RT = T->castAs<RecordType>();
2615  const RecordDecl *RD = RT->getDecl();
2616 
2617  if (!RD->isCompleteDefinition())
2618  return B;
2619 
2620  // Handle lazy compound values and symbolic values.
2621  if (std::optional<nonloc::LazyCompoundVal> LCV =
2622  V.getAs<nonloc::LazyCompoundVal>()) {
2623  if (std::optional<RegionBindingsRef> NewB =
2624  tryBindSmallStruct(B, R, RD, *LCV))
2625  return *NewB;
2626  return bindAggregate(B, R, V);
2627  }
2628  if (isa<nonloc::SymbolVal>(V))
2629  return bindAggregate(B, R, V);
2630 
2631  // We may get non-CompoundVal accidentally due to imprecise cast logic or
2632  // that we are binding symbolic struct value. Kill the field values, and if
2633  // the value is symbolic go and bind it as a "default" binding.
2634  if (V.isUnknown() || !isa<nonloc::CompoundVal>(V))
2635  return bindAggregate(B, R, UnknownVal());
2636 
2637  // The raw CompoundVal is essentially a symbolic InitListExpr: an (immutable)
2638  // list of other values. It appears pretty much only when there's an actual
2639  // initializer list expression in the program, and the analyzer tries to
2640  // unwrap it as soon as possible.
2641  // This code is where such unwrap happens: when the compound value is put into
2642  // the object that it was supposed to initialize (it's an *initializer* list,
2643  // after all), instead of binding the whole value to the whole object, we bind
2644  // sub-values to sub-objects. Sub-values may themselves be compound values,
2645  // and in this case the procedure becomes recursive.
2646  // FIXME: The annoying part about compound values is that they don't carry
2647  // any sort of information about which value corresponds to which sub-object.
2648  // It's simply a list of values in the middle of nowhere; we expect to match
2649  // them to sub-objects, essentially, "by index": first value binds to
2650  // the first field, second value binds to the second field, etc.
2651  // It would have been much safer to organize non-lazy compound values as
2652  // a mapping from fields/bases to values.
2653  const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2654  nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2655 
2656  RegionBindingsRef NewB(B);
2657 
2658  // In C++17 aggregates may have base classes, handle those as well.
2659  // They appear before fields in the initializer list / compound value.
2660  if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
2661  // If the object was constructed with a constructor, its value is a
2662  // LazyCompoundVal. If it's a raw CompoundVal, it means that we're
2663  // performing aggregate initialization. The only exception from this
2664  // rule is sending an Objective-C++ message that returns a C++ object
2665  // to a nil receiver; in this case the semantics is to return a
2666  // zero-initialized object even if it's a C++ object that doesn't have
2667  // this sort of constructor; the CompoundVal is empty in this case.
2668  assert((CRD->isAggregate() || (Ctx.getLangOpts().ObjC && VI == VE)) &&
2669  "Non-aggregates are constructed with a constructor!");
2670 
2671  for (const auto &B : CRD->bases()) {
2672  // (Multiple inheritance is fine though.)
2673  assert(!B.isVirtual() && "Aggregates cannot have virtual base classes!");
2674 
2675  if (VI == VE)
2676  break;
2677 
2678  QualType BTy = B.getType();
2679  assert(BTy->isStructureOrClassType() && "Base classes must be classes!");
2680 
2681  const CXXRecordDecl *BRD = BTy->getAsCXXRecordDecl();
2682  assert(BRD && "Base classes must be C++ classes!");
2683 
2684  const CXXBaseObjectRegion *BR =
2685  MRMgr.getCXXBaseObjectRegion(BRD, R, /*IsVirtual=*/false);
2686 
2687  NewB = bindStruct(NewB, BR, *VI);
2688 
2689  ++VI;
2690  }
2691  }
2692 
2694 
2695  for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2696 
2697  if (VI == VE)
2698  break;
2699 
2700  // Skip any unnamed bitfields to stay in sync with the initializers.
2701  if (FI->isUnnamedBitField())
2702  continue;
2703 
2704  QualType FTy = FI->getType();
2705  const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2706 
2707  if (FTy->isArrayType())
2708  NewB = bindArray(NewB, FR, *VI);
2709  else if (FTy->isStructureOrClassType())
2710  NewB = bindStruct(NewB, FR, *VI);
2711  else
2712  NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2713  ++VI;
2714  }
2715 
2716  // There may be fewer values in the initialize list than the fields of struct.
2717  if (FI != FE) {
2718  NewB = NewB.addBinding(R, BindingKey::Default,
2719  svalBuilder.makeIntVal(0, false));
2720  }
2721 
2722  return NewB;
2723 }
2724 
2725 RegionBindingsRef
2726 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2727  const TypedRegion *R,
2728  SVal Val) {
2729  // Remove the old bindings, using 'R' as the root of all regions
2730  // we will invalidate. Then add the new binding.
2731  return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2732 }
2733 
2734 //===----------------------------------------------------------------------===//
2735 // State pruning.
2736 //===----------------------------------------------------------------------===//
2737 
2738 namespace {
2739 class RemoveDeadBindingsWorker
2740  : public ClusterAnalysis<RemoveDeadBindingsWorker> {
2742  SymbolReaper &SymReaper;
2743  const StackFrameContext *CurrentLCtx;
2744 
2745 public:
2746  RemoveDeadBindingsWorker(RegionStoreManager &rm,
2747  ProgramStateManager &stateMgr,
2748  RegionBindingsRef b, SymbolReaper &symReaper,
2749  const StackFrameContext *LCtx)
2750  : ClusterAnalysis<RemoveDeadBindingsWorker>(rm, stateMgr, b),
2751  SymReaper(symReaper), CurrentLCtx(LCtx) {}
2752 
2753  // Called by ClusterAnalysis.
2754  void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2755  void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2756  using ClusterAnalysis<RemoveDeadBindingsWorker>::VisitCluster;
2757 
2758  using ClusterAnalysis::AddToWorkList;
2759 
2760  bool AddToWorkList(const MemRegion *R);
2761 
2762  bool UpdatePostponed();
2763  void VisitBinding(SVal V);
2764 };
2765 }
2766 
2767 bool RemoveDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
2768  const MemRegion *BaseR = R->getBaseRegion();
2769  return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
2770 }
2771 
2772 void RemoveDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2773  const ClusterBindings &C) {
2774 
2775  if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2776  if (SymReaper.isLive(VR))
2777  AddToWorkList(baseR, &C);
2778 
2779  return;
2780  }
2781 
2782  if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2783  if (SymReaper.isLive(SR->getSymbol()))
2784  AddToWorkList(SR, &C);
2785  else
2786  Postponed.push_back(SR);
2787 
2788  return;
2789  }
2790 
2791  if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2792  AddToWorkList(baseR, &C);
2793  return;
2794  }
2795 
2796  // CXXThisRegion in the current or parent location context is live.
2797  if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2798  const auto *StackReg =
2799  cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2800  const StackFrameContext *RegCtx = StackReg->getStackFrame();
2801  if (CurrentLCtx &&
2802  (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2803  AddToWorkList(TR, &C);
2804  }
2805 }
2806 
2807 void RemoveDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2808  const ClusterBindings *C) {
2809  if (!C)
2810  return;
2811 
2812  // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2813  // This means we should continue to track that symbol.
2814  if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2815  SymReaper.markLive(SymR->getSymbol());
2816 
2817  for (const auto &[Key, Val] : *C) {
2818  // Element index of a binding key is live.
2819  SymReaper.markElementIndicesLive(Key.getRegion());
2820 
2821  VisitBinding(Val);
2822  }
2823 }
2824 
2825 void RemoveDeadBindingsWorker::VisitBinding(SVal V) {
2826  // Is it a LazyCompoundVal? All referenced regions are live as well.
2827  // The LazyCompoundVal itself is not live but should be readable.
2828  if (auto LCS = V.getAs<nonloc::LazyCompoundVal>()) {
2829  SymReaper.markLazilyCopied(LCS->getRegion());
2830 
2831  for (SVal V : RM.getInterestingValues(*LCS)) {
2832  if (auto DepLCS = V.getAs<nonloc::LazyCompoundVal>())
2833  SymReaper.markLazilyCopied(DepLCS->getRegion());
2834  else
2835  VisitBinding(V);
2836  }
2837 
2838  return;
2839  }
2840 
2841  // If V is a region, then add it to the worklist.
2842  if (const MemRegion *R = V.getAsRegion()) {
2843  AddToWorkList(R);
2844  SymReaper.markLive(R);
2845 
2846  // All regions captured by a block are also live.
2847  if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2848  for (auto Var : BR->referenced_vars())
2849  AddToWorkList(Var.getCapturedRegion());
2850  }
2851  }
2852 
2853 
2854  // Update the set of live symbols.
2855  for (SymbolRef Sym : V.symbols())
2856  SymReaper.markLive(Sym);
2857 }
2858 
2859 bool RemoveDeadBindingsWorker::UpdatePostponed() {
2860  // See if any postponed SymbolicRegions are actually live now, after
2861  // having done a scan.
2862  bool Changed = false;
2863 
2864  for (const SymbolicRegion *SR : Postponed) {
2865  if (SymReaper.isLive(SR->getSymbol())) {
2866  Changed |= AddToWorkList(SR);
2867  SR = nullptr;
2868  }
2869  }
2870 
2871  return Changed;
2872 }
2873 
2874 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2875  const StackFrameContext *LCtx,
2876  SymbolReaper& SymReaper) {
2877  RegionBindingsRef B = getRegionBindings(store);
2878  RemoveDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2879  W.GenerateClusters();
2880 
2881  // Enqueue the region roots onto the worklist.
2882  for (const MemRegion *Reg : SymReaper.regions()) {
2883  W.AddToWorkList(Reg);
2884  }
2885 
2886  do W.RunWorkList(); while (W.UpdatePostponed());
2887 
2888  // We have now scanned the store, marking reachable regions and symbols
2889  // as live. We now remove all the regions that are dead from the store
2890  // as well as update DSymbols with the set symbols that are now dead.
2891  for (const MemRegion *Base : llvm::make_first_range(B)) {
2892  // If the cluster has been visited, we know the region has been marked.
2893  // Otherwise, remove the dead entry.
2894  if (!W.isVisited(Base))
2895  B = B.remove(Base);
2896  }
2897 
2898  return StoreRef(B.asStore(), *this);
2899 }
2900 
2901 //===----------------------------------------------------------------------===//
2902 // Utility methods.
2903 //===----------------------------------------------------------------------===//
2904 
2905 void RegionStoreManager::printJson(raw_ostream &Out, Store S, const char *NL,
2906  unsigned int Space, bool IsDot) const {
2907  RegionBindingsRef Bindings = getRegionBindings(S);
2908 
2909  Indent(Out, Space, IsDot) << "\"store\": ";
2910 
2911  if (Bindings.isEmpty()) {
2912  Out << "null," << NL;
2913  return;
2914  }
2915 
2916  Out << "{ \"pointer\": \"" << Bindings.asStore() << "\", \"items\": [" << NL;
2917  Bindings.printJson(Out, NL, Space + 1, IsDot);
2918  Indent(Out, Space, IsDot) << "]}," << NL;
2919 }
#define V(N, I)
Definition: ASTContext.h:3299
StringRef P
This file defines AnalysisDeclContext, a class that manages the analysis context data for context sen...
static char ID
Definition: Arena.cpp:183
static const MemRegion * getRegion(const CallEvent &Call, const MutexDescriptor &Descriptor, bool IsLock)
llvm::APSInt APSInt
static void dump(llvm::raw_ostream &OS, StringRef FunctionName, ArrayRef< CounterExpression > Expressions, ArrayRef< CounterMappingRegion > Regions)
unsigned Offset
Definition: Format.cpp:2978
llvm::DenseSet< const void * > Visited
Definition: HTMLLogger.cpp:146
#define X(type, name)
Definition: Value.h:143
static std::optional< SVal > convertOffsetsFromSvalToUnsigneds(const SmallVector< SVal, 2 > &SrcOffsets, const SmallVector< uint64_t, 2 > ArrayExtents, SmallVector< uint64_t, 2 > &DstOffsets)
llvm::ImmutableMap< const MemRegion *, ClusterBindings > RegionBindings
static std::optional< nonloc::LazyCompoundVal > getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B, const SubRegion *R, bool AllowSubregionBindings)
Checks to see if store B has a lazy binding for region R.
std::pair< BindingKey, SVal > BindingPair
static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields)
static bool isRecordEmpty(const RecordDecl *RD)
SmallVector< const FieldDecl *, 8 > FieldVector
llvm::ImmutableMap< BindingKey, SVal > ClusterBindings
static bool isUnionField(const FieldRegion *FR)
static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields)
static QualType getUnderlyingType(const SubRegion *R)
llvm::ImmutableMapRef< BindingKey, SVal > ClusterBindingsRef
const RegionBindingsRef & RegionBindingsConstRef
static void collectSubRegionBindings(SmallVectorImpl< BindingPair > &Bindings, SValBuilder &SVB, const ClusterBindings &Cluster, const SubRegion *Top, BindingKey TopKey, bool IncludeAllDefaultBindings)
Collects all bindings in Cluster that may refer to bindings within Top.
static std::optional< SVal > getDerivedSymbolForBinding(RegionBindingsConstRef B, const TypedValueRegion *BaseRegion, const TypedValueRegion *SubReg, const ASTContext &Ctx, SValBuilder &SVB)
static std::pair< SmallVector< SVal, 2 >, const MemRegion * > getElementRegionOffsetsWithBase(const ElementRegion *ER)
This is a helper function for getConstantValFromConstArrayInitializer.
static SmallVector< uint64_t, 2 > getConstantArrayExtents(const ConstantArrayType *CAT)
This is a helper function for getConstantValFromConstArrayInitializer.
llvm::SmallVector< std::pair< const MemRegion *, SVal >, 4 > Bindings
const char * Data
__device__ __2f16 b
__PTRDIFF_TYPE__ ptrdiff_t
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:185
CanQualType getCanonicalType(QualType T) const
Return the canonical (structural) type corresponding to the specified potentially non-canonical type ...
Definition: ASTContext.h:2589
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2782
const LangOptions & getLangOpts() const
Definition: ASTContext.h:778
CanQualType IntTy
Definition: ASTContext.h:1103
bool hasSameUnqualifiedType(QualType T1, QualType T2) const
Determine whether the given types are equivalent after cvr-qualifiers have been removed.
Definition: ASTContext.h:2632
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
uint64_t getTypeSize(QualType T) const
Return the size of the specified (complete) type T, in bits.
Definition: ASTContext.h:2355
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const
Return number of constant array elements.
uint64_t getCharWidth() const
Return the size of the character type, in bits.
Definition: ASTContext.h:2359
Stores options for the analyzer from the command line.
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:3530
QualType getElementType() const
Definition: Type.h:3542
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
Represents the canonical version of C arrays with a specified constant size.
Definition: Type.h:3568
uint64_t getLimitedSize() const
Return the size zero-extended to uint64_t or UINT64_MAX if the value is larger than UINT64_MAX.
Definition: Type.h:3657
uint64_t getZExtSize() const
Return the size zero-extended as a uint64_t.
Definition: Type.h:3644
specific_decl_iterator - Iterates over a subrange of declarations stored in a DeclContext,...
Definition: DeclBase.h:2342
static void add(Kind k)
Definition: DeclBase.cpp:202
bool hasAttr() const
Definition: DeclBase.h:583
This represents one expression.
Definition: Expr.h:110
Represents a member of a struct/union/class.
Definition: Decl.h:3060
unsigned getFieldIndex() const
Returns the index of this field within its record, as appropriate for passing to ASTRecordLayout::get...
Definition: Decl.cpp:4648
bool isUnnamedBitField() const
Determines whether this is an unnamed bitfield.
Definition: Decl.h:3154
const RecordDecl * getParent() const
Returns the parent of this field declaration, which is the struct in which this field is defined.
Definition: Decl.h:3273
Describes an C or C++ initializer list.
Definition: Expr.h:4888
bool isStringLiteralInit() const
Is this an initializer for an array of characters, initialized by a string literal or an @encode?
Definition: Expr.cpp:2470
unsigned getNumInits() const
Definition: Expr.h:4918
const Expr * getInit(unsigned Init) const
Definition: Expr.h:4934
It wraps the AnalysisDeclContext to represent both the call stack with the help of StackFrameContext ...
bool isParentOf(const LocationContext *LC) const
const Decl * getDecl() const
const StackFrameContext * getStackFrame() const
A (possibly-)qualified type.
Definition: Type.h:940
bool isNull() const
Return true if this QualType doesn't point to a type yet.
Definition: Type.h:1007
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:7444
Represents a struct/union/class.
Definition: Decl.h:4171
field_range fields() const
Definition: Decl.h:4377
RecordDecl * getDefinition() const
Returns the RecordDecl that actually defines this struct/union/class.
Definition: Decl.h:4362
bool field_empty() const
Definition: Decl.h:4385
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:5561
RecordDecl * getDecl() const
Definition: Type.h:5571
It represents a stack frame of the call stack (based on CallEvent).
StringLiteral - This represents a string literal expression, e.g.
Definition: Expr.h:1773
unsigned getLength() const
Definition: Expr.h:1890
uint32_t getCodeUnit(size_t i) const
Definition: Expr.h:1865
bool isUnion() const
Definition: Decl.h:3793
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1881
bool isVoidType() const
Definition: Type.h:7939
bool isConstantArrayType() const
Definition: Type.h:7694
bool isVoidPointerType() const
Definition: Type.cpp:665
bool isArrayType() const
Definition: Type.h:7690
const T * castAs() const
Member-template castAs<specific type>.
Definition: Type.h:8227
bool isReferenceType() const
Definition: Type.h:7636
bool isScalarType() const
Definition: Type.h:8038
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:705
bool isIntegralOrEnumerationType() const
Determine whether this type is an integral or enumeration type.
Definition: Type.h:8054
bool isAnyComplexType() const
Definition: Type.h:7726
QualType getCanonicalTypeInternal() const
Definition: Type.h:2944
bool isStructureOrClassType() const
Definition: Type.cpp:657
bool isVectorType() const
Definition: Type.h:7730
bool isRecordType() const
Definition: Type.h:7718
bool isUnionType() const
Definition: Type.cpp:671
QualType getType() const
Definition: Decl.h:718
Represents a variable declaration or definition.
Definition: Decl.h:919
bool hasGlobalStorage() const
Returns true for all variables that do not have local storage.
Definition: Decl.h:1214
const Expr * getAnyInitializer() const
Get the initializer for this variable, no matter which declaration it is attached to.
Definition: Decl.h:1346
bool hasLocalStorage() const
Returns true if a variable with function scope is a non-static local variable.
Definition: Decl.h:1172
Represents a GCC generic vector type.
Definition: Type.h:3981
unsigned getNumElements() const
Definition: Type.h:3996
QualType getElementType() const
Definition: Type.h:3995
Maps string IDs to AST nodes matched by parts of a matcher.
Definition: ASTMatchers.h:109
BlockDataRegion - A region that represents a block instance.
Definition: MemRegion.h:673
CXXThisRegion - Represents the region for the implicit 'this' parameter in a call to a C++ method.
Definition: MemRegion.h:1069
Represents an abstract call to a function or method along a particular path.
Definition: CallEvent.h:153
ElementRegion is used to represent both array elements and casts.
Definition: MemRegion.h:1194
QualType getElementType() const
Definition: MemRegion.h:1218
NonLoc getIndex() const
Definition: MemRegion.h:1214
RegionRawOffset getAsArrayOffset() const
Compute the offset within the array. The array might also be a subobject.
Definition: MemRegion.cpp:1412
AnalysisManager & getAnalysisManager()
Definition: ExprEngine.h:198
LLVM_ATTRIBUTE_RETURNS_NONNULL const FieldDecl * getDecl() const override
Definition: MemRegion.h:1120
static bool isLocType(QualType T)
Definition: SVals.h:259
DefinedOrUnknownSVal getStaticSize(const MemRegion *MR, SValBuilder &SVB) const
Definition: MemRegion.cpp:772
MemRegion - The root abstract class for all memory regions.
Definition: MemRegion.h:96
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemSpaceRegion * getMemorySpace() const
Definition: MemRegion.cpp:1317
virtual bool isBoundable() const
Definition: MemRegion.h:178
RegionOffset getAsOffset() const
Compute the offset within the top level memory object.
Definition: MemRegion.cpp:1651
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemRegion * getBaseRegion() const
Definition: MemRegion.cpp:1343
bool hasStackNonParametersStorage() const
Definition: MemRegion.cpp:1333
MemSpaceRegion - A memory region that represents a "memory space"; for example, the set of global var...
Definition: MemRegion.h:203
Information about invalidation for a particular region/symbol.
Definition: MemRegion.h:1624
@ TK_PreserveContents
Tells that a region's contents is not changed.
Definition: MemRegion.h:1639
@ TK_EntireMemSpace
When applied to a MemSpaceRegion, indicates the entire memory space should be invalidated.
Definition: MemRegion.h:1649
Represent a region's offset within the top level base region.
Definition: MemRegion.h:63
bool hasSymbolicOffset() const
Definition: MemRegion.h:81
int64_t getOffset() const
Definition: MemRegion.h:83
const MemRegion * getRegion() const
It might return null.
Definition: MemRegion.h:79
const MemRegion * getRegion() const
Definition: MemRegion.h:1187
DefinedOrUnknownSVal makeZeroVal(QualType type)
Construct an SVal representing '0' for the specified type.
Definition: SValBuilder.cpp:62
ASTContext & getContext()
Definition: SValBuilder.h:148
NonLoc makeArrayIndex(uint64_t idx)
Definition: SValBuilder.h:284
nonloc::ConcreteInt makeIntVal(const IntegerLiteral *integer)
Definition: SValBuilder.h:290
SVal evalCast(SVal V, QualType CastTy, QualType OriginalTy)
Cast a given SVal to another SVal using given QualType's.
DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag, const Expr *expr, const LocationContext *LCtx, unsigned count)
Create a new symbol with a unique 'name'.
DefinedOrUnknownSVal getDerivedRegionValueSymbolVal(SymbolRef parentSymbol, const TypedValueRegion *region)
loc::ConcreteInt makeNullWithType(QualType type)
Create NULL pointer, with proper pointer bit-width for given address space.
Definition: SValBuilder.h:361
std::optional< SVal > getConstantVal(const Expr *E)
Returns the value of E, if it can be determined in a non-path-sensitive manner.
DefinedOrUnknownSVal getRegionValueSymbolVal(const TypedValueRegion *region)
Make a unique symbol for value of region.
NonLoc makeLazyCompoundVal(const StoreRef &store, const TypedValueRegion *region)
Definition: SValBuilder.h:266
SVal - This represents a symbolic expression, which can be either an L-value or an R-value.
Definition: SVals.h:55
bool isZeroConstant() const
Definition: SVals.cpp:258
bool isUnknownOrUndef() const
Definition: SVals.h:106
SymbolRef getAsSymbol(bool IncludeBaseRegions=false) const
If this SVal wraps a symbol return that SymbolRef.
Definition: SVals.cpp:104
bool isConstant() const
Definition: SVals.cpp:246
const MemRegion * getAsRegion() const
Definition: SVals.cpp:120
std::optional< T > getAs() const
Convert to the specified SVal type, returning std::nullopt if this SVal is not of the desired type.
Definition: SVals.h:86
T castAs() const
Convert to the specified SVal type, asserting that this SVal is of the desired type.
Definition: SVals.h:82
A utility class that visits the reachable symbols using a custom SymbolVisitor.
Definition: ProgramState.h:893
bool scan(nonloc::LazyCompoundVal val)
StringRegion - Region associated with a StringLiteral.
Definition: MemRegion.h:824
SubRegion - A region that subsets another larger region.
Definition: MemRegion.h:441
bool isSubRegionOf(const MemRegion *R) const override
Check if the region is a subregion of the given region.
Definition: MemRegion.cpp:132
MemRegionManager & getMemRegionManager() const override
Definition: MemRegion.cpp:145
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemRegion * getSuperRegion() const
Definition: MemRegion.h:454
Symbolic value.
Definition: SymExpr.h:30
static bool canSymbolicate(QualType T)
A class responsible for cleaning up unused symbols.
llvm::iterator_range< RegionSetTy::const_iterator > regions() const
SymbolicRegion - A special, "non-concrete" region.
Definition: MemRegion.h:775
TypedRegion - An abstract class representing regions that are typed.
Definition: MemRegion.h:506
TypedValueRegion - An abstract class representing regions having a typed value.
Definition: MemRegion.h:530
virtual QualType getValueType() const =0
QualType getLocationType() const override
Definition: MemRegion.h:541
QualType getValueType() const override
Definition: MemRegion.h:966
const VarDecl * getDecl() const override=0
LLVM_ATTRIBUTE_RETURNS_NONNULL const MemRegion * getRegion() const
Get the underlining region.
Definition: SVals.h:441
llvm::ImmutableList< SVal >::iterator iterator
Definition: SVals.h:342
Value representing integer constant.
Definition: SVals.h:297
LLVM_ATTRIBUTE_RETURNS_NONNULL const TypedValueRegion * getRegion() const
Definition: SVals.cpp:194
LLVM_ATTRIBUTE_RETURNS_NONNULL const LazyCompoundValData * getCVData() const
Definition: SVals.h:359
const void * getStore() const
It might return null.
Definition: SVals.cpp:190
Defines the clang::TargetInfo interface.
const internal::VariadicDynCastAllOfMatcher< Decl, VarDecl > varDecl
Matches variable declarations.
const internal::VariadicDynCastAllOfMatcher< Stmt, DeclRefExpr > declRefExpr
Matches expressions that refer to declarations.
const internal::ArgumentAdaptingMatcherFunc< internal::HasDescendantMatcher > hasDescendant
Matches AST nodes that have descendant AST nodes that match the provided matcher.
SmallVector< BoundNodes, 1 > match(MatcherT Matcher, const NodeT &Node, ASTContext &Context)
Returns the results of matching Matcher on Node.
internal::Matcher< Stmt > StatementMatcher
Definition: ASTMatchers.h:144
const internal::VariadicAllOfMatcher< Stmt > stmt
Matches statements.
raw_ostream & operator<<(raw_ostream &Out, const CheckerBase &Checker)
Dump checker name to stream.
Definition: Checker.cpp:35
std::unique_ptr< StoreManager > CreateRegionStoreManager(ProgramStateManager &StMgr)
const void * Store
Store - This opaque type encapsulates an immutable mapping from locations to values.
Definition: StoreRef.h:27
bool Call(InterpState &S, CodePtr OpPC, const Function *Func, uint32_t VarArgSize)
Definition: Interp.h:2179
bool Init(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1472
ASTEdit remove(RangeSelector S)
Removes the source selected by S.
The JSON file list parser is used to communicate input to InstallAPI.
bool operator==(const CallGraphNode::CallRecord &LHS, const CallGraphNode::CallRecord &RHS)
Definition: CallGraph.h:223
bool operator<(DeclarationName LHS, DeclarationName RHS)
Ordering on two declaration names.
const FunctionProtoType * T
raw_ostream & Indent(raw_ostream &Out, const unsigned int Space, bool IsDot)
Definition: JsonSupport.h:21
@ Class
The "class" keyword introduces the elaborated-type-specifier.
unsigned long uint64_t
Diagnostic wrappers for TextAPI types for error reporting.
Definition: Dominators.h:30
Definition: Format.h:5433
__UINTPTR_TYPE__ uintptr_t
An unsigned integer type with the property that any valid pointer to void can be converted to this ty...