clang  19.0.0git
ThreadSafety.cpp
Go to the documentation of this file.
1 //===- ThreadSafety.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
10 // conditions), based off of an annotation system.
11 //
12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13 // for more information.
14 //
15 //===----------------------------------------------------------------------===//
16 
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclGroup.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/AST/Type.h"
34 #include "clang/Analysis/CFG.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/LLVM.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/ImmutableMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/Support/Allocator.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <functional>
53 #include <iterator>
54 #include <memory>
55 #include <optional>
56 #include <string>
57 #include <type_traits>
58 #include <utility>
59 #include <vector>
60 
61 using namespace clang;
62 using namespace threadSafety;
63 
64 // Key method definition
66 
67 /// Issue a warning about an invalid lock expression
68 static void warnInvalidLock(ThreadSafetyHandler &Handler,
69  const Expr *MutexExp, const NamedDecl *D,
70  const Expr *DeclExp, StringRef Kind) {
72  if (DeclExp)
73  Loc = DeclExp->getExprLoc();
74 
75  // FIXME: add a note about the attribute location in MutexExp or D
76  if (Loc.isValid())
77  Handler.handleInvalidLockExp(Loc);
78 }
79 
80 namespace {
81 
82 /// A set of CapabilityExpr objects, which are compiled from thread safety
83 /// attributes on a function.
84 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
85 public:
86  /// Push M onto list, but discard duplicates.
87  void push_back_nodup(const CapabilityExpr &CapE) {
88  if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) {
89  return CapE.equals(CapE2);
90  }))
91  push_back(CapE);
92  }
93 };
94 
95 class FactManager;
96 class FactSet;
97 
98 /// This is a helper class that stores a fact that is known at a
99 /// particular point in program execution. Currently, a fact is a capability,
100 /// along with additional information, such as where it was acquired, whether
101 /// it is exclusive or shared, etc.
102 ///
103 /// FIXME: this analysis does not currently support re-entrant locking.
104 class FactEntry : public CapabilityExpr {
105 public:
106  /// Where a fact comes from.
107  enum SourceKind {
108  Acquired, ///< The fact has been directly acquired.
109  Asserted, ///< The fact has been asserted to be held.
110  Declared, ///< The fact is assumed to be held by callers.
111  Managed, ///< The fact has been acquired through a scoped capability.
112  };
113 
114 private:
115  /// Exclusive or shared.
116  LockKind LKind : 8;
117 
118  // How it was acquired.
119  SourceKind Source : 8;
120 
121  /// Where it was acquired.
122  SourceLocation AcquireLoc;
123 
124 public:
125  FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
126  SourceKind Src)
127  : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {}
128  virtual ~FactEntry() = default;
129 
130  LockKind kind() const { return LKind; }
131  SourceLocation loc() const { return AcquireLoc; }
132 
133  bool asserted() const { return Source == Asserted; }
134  bool declared() const { return Source == Declared; }
135  bool managed() const { return Source == Managed; }
136 
137  virtual void
138  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
139  SourceLocation JoinLoc, LockErrorKind LEK,
140  ThreadSafetyHandler &Handler) const = 0;
141  virtual void handleLock(FactSet &FSet, FactManager &FactMan,
142  const FactEntry &entry,
143  ThreadSafetyHandler &Handler) const = 0;
144  virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
145  const CapabilityExpr &Cp, SourceLocation UnlockLoc,
146  bool FullyRemove,
147  ThreadSafetyHandler &Handler) const = 0;
148 
149  // Return true if LKind >= LK, where exclusive > shared
150  bool isAtLeast(LockKind LK) const {
151  return (LKind == LK_Exclusive) || (LK == LK_Shared);
152  }
153 };
154 
155 using FactID = unsigned short;
156 
157 /// FactManager manages the memory for all facts that are created during
158 /// the analysis of a single routine.
159 class FactManager {
160 private:
161  std::vector<std::unique_ptr<const FactEntry>> Facts;
162 
163 public:
164  FactID newFact(std::unique_ptr<FactEntry> Entry) {
165  Facts.push_back(std::move(Entry));
166  return static_cast<unsigned short>(Facts.size() - 1);
167  }
168 
169  const FactEntry &operator[](FactID F) const { return *Facts[F]; }
170 };
171 
172 /// A FactSet is the set of facts that are known to be true at a
173 /// particular program point. FactSets must be small, because they are
174 /// frequently copied, and are thus implemented as a set of indices into a
175 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2
176 /// locks, so we can get away with doing a linear search for lookup. Note
177 /// that a hashtable or map is inappropriate in this case, because lookups
178 /// may involve partial pattern matches, rather than exact matches.
179 class FactSet {
180 private:
181  using FactVec = SmallVector<FactID, 4>;
182 
183  FactVec FactIDs;
184 
185 public:
186  using iterator = FactVec::iterator;
187  using const_iterator = FactVec::const_iterator;
188 
189  iterator begin() { return FactIDs.begin(); }
190  const_iterator begin() const { return FactIDs.begin(); }
191 
192  iterator end() { return FactIDs.end(); }
193  const_iterator end() const { return FactIDs.end(); }
194 
195  bool isEmpty() const { return FactIDs.size() == 0; }
196 
197  // Return true if the set contains only negative facts
198  bool isEmpty(FactManager &FactMan) const {
199  for (const auto FID : *this) {
200  if (!FactMan[FID].negative())
201  return false;
202  }
203  return true;
204  }
205 
206  void addLockByID(FactID ID) { FactIDs.push_back(ID); }
207 
208  FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
209  FactID F = FM.newFact(std::move(Entry));
210  FactIDs.push_back(F);
211  return F;
212  }
213 
214  bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
215  unsigned n = FactIDs.size();
216  if (n == 0)
217  return false;
218 
219  for (unsigned i = 0; i < n-1; ++i) {
220  if (FM[FactIDs[i]].matches(CapE)) {
221  FactIDs[i] = FactIDs[n-1];
222  FactIDs.pop_back();
223  return true;
224  }
225  }
226  if (FM[FactIDs[n-1]].matches(CapE)) {
227  FactIDs.pop_back();
228  return true;
229  }
230  return false;
231  }
232 
233  iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
234  return std::find_if(begin(), end(), [&](FactID ID) {
235  return FM[ID].matches(CapE);
236  });
237  }
238 
239  const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
240  auto I = std::find_if(begin(), end(), [&](FactID ID) {
241  return FM[ID].matches(CapE);
242  });
243  return I != end() ? &FM[*I] : nullptr;
244  }
245 
246  const FactEntry *findLockUniv(FactManager &FM,
247  const CapabilityExpr &CapE) const {
248  auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
249  return FM[ID].matchesUniv(CapE);
250  });
251  return I != end() ? &FM[*I] : nullptr;
252  }
253 
254  const FactEntry *findPartialMatch(FactManager &FM,
255  const CapabilityExpr &CapE) const {
256  auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
257  return FM[ID].partiallyMatches(CapE);
258  });
259  return I != end() ? &FM[*I] : nullptr;
260  }
261 
262  bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
263  auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
264  return FM[ID].valueDecl() == Vd;
265  });
266  return I != end();
267  }
268 };
269 
270 class ThreadSafetyAnalyzer;
271 
272 } // namespace
273 
274 namespace clang {
275 namespace threadSafety {
276 
277 class BeforeSet {
278 private:
280 
281  struct BeforeInfo {
282  BeforeVect Vect;
283  int Visited = 0;
284 
285  BeforeInfo() = default;
286  BeforeInfo(BeforeInfo &&) = default;
287  };
288 
289  using BeforeMap =
290  llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
291  using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
292 
293 public:
294  BeforeSet() = default;
295 
296  BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
297  ThreadSafetyAnalyzer& Analyzer);
298 
299  BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
300  ThreadSafetyAnalyzer &Analyzer);
301 
302  void checkBeforeAfter(const ValueDecl* Vd,
303  const FactSet& FSet,
304  ThreadSafetyAnalyzer& Analyzer,
305  SourceLocation Loc, StringRef CapKind);
306 
307 private:
308  BeforeMap BMap;
309  CycleMap CycMap;
310 };
311 
312 } // namespace threadSafety
313 } // namespace clang
314 
315 namespace {
316 
317 class LocalVariableMap;
318 
319 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
320 
321 /// A side (entry or exit) of a CFG node.
322 enum CFGBlockSide { CBS_Entry, CBS_Exit };
323 
324 /// CFGBlockInfo is a struct which contains all the information that is
325 /// maintained for each block in the CFG. See LocalVariableMap for more
326 /// information about the contexts.
327 struct CFGBlockInfo {
328  // Lockset held at entry to block
329  FactSet EntrySet;
330 
331  // Lockset held at exit from block
332  FactSet ExitSet;
333 
334  // Context held at entry to block
335  LocalVarContext EntryContext;
336 
337  // Context held at exit from block
338  LocalVarContext ExitContext;
339 
340  // Location of first statement in block
341  SourceLocation EntryLoc;
342 
343  // Location of last statement in block.
344  SourceLocation ExitLoc;
345 
346  // Used to replay contexts later
347  unsigned EntryIndex;
348 
349  // Is this block reachable?
350  bool Reachable = false;
351 
352  const FactSet &getSet(CFGBlockSide Side) const {
353  return Side == CBS_Entry ? EntrySet : ExitSet;
354  }
355 
356  SourceLocation getLocation(CFGBlockSide Side) const {
357  return Side == CBS_Entry ? EntryLoc : ExitLoc;
358  }
359 
360 private:
361  CFGBlockInfo(LocalVarContext EmptyCtx)
362  : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
363 
364 public:
365  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
366 };
367 
368 // A LocalVariableMap maintains a map from local variables to their currently
369 // valid definitions. It provides SSA-like functionality when traversing the
370 // CFG. Like SSA, each definition or assignment to a variable is assigned a
371 // unique name (an integer), which acts as the SSA name for that definition.
372 // The total set of names is shared among all CFG basic blocks.
373 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
374 // with their SSA-names. Instead, we compute a Context for each point in the
375 // code, which maps local variables to the appropriate SSA-name. This map
376 // changes with each assignment.
377 //
378 // The map is computed in a single pass over the CFG. Subsequent analyses can
379 // then query the map to find the appropriate Context for a statement, and use
380 // that Context to look up the definitions of variables.
381 class LocalVariableMap {
382 public:
383  using Context = LocalVarContext;
384 
385  /// A VarDefinition consists of an expression, representing the value of the
386  /// variable, along with the context in which that expression should be
387  /// interpreted. A reference VarDefinition does not itself contain this
388  /// information, but instead contains a pointer to a previous VarDefinition.
389  struct VarDefinition {
390  public:
391  friend class LocalVariableMap;
392 
393  // The original declaration for this variable.
394  const NamedDecl *Dec;
395 
396  // The expression for this variable, OR
397  const Expr *Exp = nullptr;
398 
399  // Reference to another VarDefinition
400  unsigned Ref = 0;
401 
402  // The map with which Exp should be interpreted.
403  Context Ctx;
404 
405  bool isReference() const { return !Exp; }
406 
407  private:
408  // Create ordinary variable definition
409  VarDefinition(const NamedDecl *D, const Expr *E, Context C)
410  : Dec(D), Exp(E), Ctx(C) {}
411 
412  // Create reference to previous definition
413  VarDefinition(const NamedDecl *D, unsigned R, Context C)
414  : Dec(D), Ref(R), Ctx(C) {}
415  };
416 
417 private:
418  Context::Factory ContextFactory;
419  std::vector<VarDefinition> VarDefinitions;
420  std::vector<std::pair<const Stmt *, Context>> SavedContexts;
421 
422 public:
423  LocalVariableMap() {
424  // index 0 is a placeholder for undefined variables (aka phi-nodes).
425  VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
426  }
427 
428  /// Look up a definition, within the given context.
429  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
430  const unsigned *i = Ctx.lookup(D);
431  if (!i)
432  return nullptr;
433  assert(*i < VarDefinitions.size());
434  return &VarDefinitions[*i];
435  }
436 
437  /// Look up the definition for D within the given context. Returns
438  /// NULL if the expression is not statically known. If successful, also
439  /// modifies Ctx to hold the context of the return Expr.
440  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
441  const unsigned *P = Ctx.lookup(D);
442  if (!P)
443  return nullptr;
444 
445  unsigned i = *P;
446  while (i > 0) {
447  if (VarDefinitions[i].Exp) {
448  Ctx = VarDefinitions[i].Ctx;
449  return VarDefinitions[i].Exp;
450  }
451  i = VarDefinitions[i].Ref;
452  }
453  return nullptr;
454  }
455 
456  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
457 
458  /// Return the next context after processing S. This function is used by
459  /// clients of the class to get the appropriate context when traversing the
460  /// CFG. It must be called for every assignment or DeclStmt.
461  Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
462  if (SavedContexts[CtxIndex+1].first == S) {
463  CtxIndex++;
464  Context Result = SavedContexts[CtxIndex].second;
465  return Result;
466  }
467  return C;
468  }
469 
470  void dumpVarDefinitionName(unsigned i) {
471  if (i == 0) {
472  llvm::errs() << "Undefined";
473  return;
474  }
475  const NamedDecl *Dec = VarDefinitions[i].Dec;
476  if (!Dec) {
477  llvm::errs() << "<<NULL>>";
478  return;
479  }
480  Dec->printName(llvm::errs());
481  llvm::errs() << "." << i << " " << ((const void*) Dec);
482  }
483 
484  /// Dumps an ASCII representation of the variable map to llvm::errs()
485  void dump() {
486  for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
487  const Expr *Exp = VarDefinitions[i].Exp;
488  unsigned Ref = VarDefinitions[i].Ref;
489 
490  dumpVarDefinitionName(i);
491  llvm::errs() << " = ";
492  if (Exp) Exp->dump();
493  else {
494  dumpVarDefinitionName(Ref);
495  llvm::errs() << "\n";
496  }
497  }
498  }
499 
500  /// Dumps an ASCII representation of a Context to llvm::errs()
501  void dumpContext(Context C) {
502  for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
503  const NamedDecl *D = I.getKey();
504  D->printName(llvm::errs());
505  llvm::errs() << " -> ";
506  dumpVarDefinitionName(I.getData());
507  llvm::errs() << "\n";
508  }
509  }
510 
511  /// Builds the variable map.
512  void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
513  std::vector<CFGBlockInfo> &BlockInfo);
514 
515 protected:
516  friend class VarMapBuilder;
517 
518  // Get the current context index
519  unsigned getContextIndex() { return SavedContexts.size()-1; }
520 
521  // Save the current context for later replay
522  void saveContext(const Stmt *S, Context C) {
523  SavedContexts.push_back(std::make_pair(S, C));
524  }
525 
526  // Adds a new definition to the given context, and returns a new context.
527  // This method should be called when declaring a new variable.
528  Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
529  assert(!Ctx.contains(D));
530  unsigned newID = VarDefinitions.size();
531  Context NewCtx = ContextFactory.add(Ctx, D, newID);
532  VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
533  return NewCtx;
534  }
535 
536  // Add a new reference to an existing definition.
537  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
538  unsigned newID = VarDefinitions.size();
539  Context NewCtx = ContextFactory.add(Ctx, D, newID);
540  VarDefinitions.push_back(VarDefinition(D, i, Ctx));
541  return NewCtx;
542  }
543 
544  // Updates a definition only if that definition is already in the map.
545  // This method should be called when assigning to an existing variable.
546  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
547  if (Ctx.contains(D)) {
548  unsigned newID = VarDefinitions.size();
549  Context NewCtx = ContextFactory.remove(Ctx, D);
550  NewCtx = ContextFactory.add(NewCtx, D, newID);
551  VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
552  return NewCtx;
553  }
554  return Ctx;
555  }
556 
557  // Removes a definition from the context, but keeps the variable name
558  // as a valid variable. The index 0 is a placeholder for cleared definitions.
559  Context clearDefinition(const NamedDecl *D, Context Ctx) {
560  Context NewCtx = Ctx;
561  if (NewCtx.contains(D)) {
562  NewCtx = ContextFactory.remove(NewCtx, D);
563  NewCtx = ContextFactory.add(NewCtx, D, 0);
564  }
565  return NewCtx;
566  }
567 
568  // Remove a definition entirely frmo the context.
569  Context removeDefinition(const NamedDecl *D, Context Ctx) {
570  Context NewCtx = Ctx;
571  if (NewCtx.contains(D)) {
572  NewCtx = ContextFactory.remove(NewCtx, D);
573  }
574  return NewCtx;
575  }
576 
577  Context intersectContexts(Context C1, Context C2);
578  Context createReferenceContext(Context C);
579  void intersectBackEdge(Context C1, Context C2);
580 };
581 
582 } // namespace
583 
584 // This has to be defined after LocalVariableMap.
585 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
586  return CFGBlockInfo(M.getEmptyContext());
587 }
588 
589 namespace {
590 
591 /// Visitor which builds a LocalVariableMap
592 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
593 public:
594  LocalVariableMap* VMap;
595  LocalVariableMap::Context Ctx;
596 
597  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
598  : VMap(VM), Ctx(C) {}
599 
600  void VisitDeclStmt(const DeclStmt *S);
601  void VisitBinaryOperator(const BinaryOperator *BO);
602 };
603 
604 } // namespace
605 
606 // Add new local variables to the variable map
607 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
608  bool modifiedCtx = false;
609  const DeclGroupRef DGrp = S->getDeclGroup();
610  for (const auto *D : DGrp) {
611  if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
612  const Expr *E = VD->getInit();
613 
614  // Add local variables with trivial type to the variable map
615  QualType T = VD->getType();
616  if (T.isTrivialType(VD->getASTContext())) {
617  Ctx = VMap->addDefinition(VD, E, Ctx);
618  modifiedCtx = true;
619  }
620  }
621  }
622  if (modifiedCtx)
623  VMap->saveContext(S, Ctx);
624 }
625 
626 // Update local variable definitions in variable map
627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
628  if (!BO->isAssignmentOp())
629  return;
630 
631  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
632 
633  // Update the variable map and current context.
634  if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
635  const ValueDecl *VDec = DRE->getDecl();
636  if (Ctx.lookup(VDec)) {
637  if (BO->getOpcode() == BO_Assign)
638  Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
639  else
640  // FIXME -- handle compound assignment operators
641  Ctx = VMap->clearDefinition(VDec, Ctx);
642  VMap->saveContext(BO, Ctx);
643  }
644  }
645 }
646 
647 // Computes the intersection of two contexts. The intersection is the
648 // set of variables which have the same definition in both contexts;
649 // variables with different definitions are discarded.
650 LocalVariableMap::Context
651 LocalVariableMap::intersectContexts(Context C1, Context C2) {
652  Context Result = C1;
653  for (const auto &P : C1) {
654  const NamedDecl *Dec = P.first;
655  const unsigned *i2 = C2.lookup(Dec);
656  if (!i2) // variable doesn't exist on second path
657  Result = removeDefinition(Dec, Result);
658  else if (*i2 != P.second) // variable exists, but has different definition
659  Result = clearDefinition(Dec, Result);
660  }
661  return Result;
662 }
663 
664 // For every variable in C, create a new variable that refers to the
665 // definition in C. Return a new context that contains these new variables.
666 // (We use this for a naive implementation of SSA on loop back-edges.)
667 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
668  Context Result = getEmptyContext();
669  for (const auto &P : C)
670  Result = addReference(P.first, P.second, Result);
671  return Result;
672 }
673 
674 // This routine also takes the intersection of C1 and C2, but it does so by
675 // altering the VarDefinitions. C1 must be the result of an earlier call to
676 // createReferenceContext.
677 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
678  for (const auto &P : C1) {
679  unsigned i1 = P.second;
680  VarDefinition *VDef = &VarDefinitions[i1];
681  assert(VDef->isReference());
682 
683  const unsigned *i2 = C2.lookup(P.first);
684  if (!i2 || (*i2 != i1))
685  VDef->Ref = 0; // Mark this variable as undefined
686  }
687 }
688 
689 // Traverse the CFG in topological order, so all predecessors of a block
690 // (excluding back-edges) are visited before the block itself. At
691 // each point in the code, we calculate a Context, which holds the set of
692 // variable definitions which are visible at that point in execution.
693 // Visible variables are mapped to their definitions using an array that
694 // contains all definitions.
695 //
696 // At join points in the CFG, the set is computed as the intersection of
697 // the incoming sets along each edge, E.g.
698 //
699 // { Context | VarDefinitions }
700 // int x = 0; { x -> x1 | x1 = 0 }
701 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
702 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
703 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
704 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
705 //
706 // This is essentially a simpler and more naive version of the standard SSA
707 // algorithm. Those definitions that remain in the intersection are from blocks
708 // that strictly dominate the current block. We do not bother to insert proper
709 // phi nodes, because they are not used in our analysis; instead, wherever
710 // a phi node would be required, we simply remove that definition from the
711 // context (E.g. x above).
712 //
713 // The initial traversal does not capture back-edges, so those need to be
714 // handled on a separate pass. Whenever the first pass encounters an
715 // incoming back edge, it duplicates the context, creating new definitions
716 // that refer back to the originals. (These correspond to places where SSA
717 // might have to insert a phi node.) On the second pass, these definitions are
718 // set to NULL if the variable has changed on the back-edge (i.e. a phi
719 // node was actually required.) E.g.
720 //
721 // { Context | VarDefinitions }
722 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
723 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
724 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
725 // ... { y -> y1 | x3 = 2, x2 = 1, ... }
726 void LocalVariableMap::traverseCFG(CFG *CFGraph,
727  const PostOrderCFGView *SortedGraph,
728  std::vector<CFGBlockInfo> &BlockInfo) {
729  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
730 
731  for (const auto *CurrBlock : *SortedGraph) {
732  unsigned CurrBlockID = CurrBlock->getBlockID();
733  CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
734 
735  VisitedBlocks.insert(CurrBlock);
736 
737  // Calculate the entry context for the current block
738  bool HasBackEdges = false;
739  bool CtxInit = true;
740  for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
741  PE = CurrBlock->pred_end(); PI != PE; ++PI) {
742  // if *PI -> CurrBlock is a back edge, so skip it
743  if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
744  HasBackEdges = true;
745  continue;
746  }
747 
748  unsigned PrevBlockID = (*PI)->getBlockID();
749  CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
750 
751  if (CtxInit) {
752  CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
753  CtxInit = false;
754  }
755  else {
756  CurrBlockInfo->EntryContext =
757  intersectContexts(CurrBlockInfo->EntryContext,
758  PrevBlockInfo->ExitContext);
759  }
760  }
761 
762  // Duplicate the context if we have back-edges, so we can call
763  // intersectBackEdges later.
764  if (HasBackEdges)
765  CurrBlockInfo->EntryContext =
766  createReferenceContext(CurrBlockInfo->EntryContext);
767 
768  // Create a starting context index for the current block
769  saveContext(nullptr, CurrBlockInfo->EntryContext);
770  CurrBlockInfo->EntryIndex = getContextIndex();
771 
772  // Visit all the statements in the basic block.
773  VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
774  for (const auto &BI : *CurrBlock) {
775  switch (BI.getKind()) {
776  case CFGElement::Statement: {
777  CFGStmt CS = BI.castAs<CFGStmt>();
778  VMapBuilder.Visit(CS.getStmt());
779  break;
780  }
781  default:
782  break;
783  }
784  }
785  CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
786 
787  // Mark variables on back edges as "unknown" if they've been changed.
788  for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
789  SE = CurrBlock->succ_end(); SI != SE; ++SI) {
790  // if CurrBlock -> *SI is *not* a back edge
791  if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
792  continue;
793 
794  CFGBlock *FirstLoopBlock = *SI;
795  Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
796  Context LoopEnd = CurrBlockInfo->ExitContext;
797  intersectBackEdge(LoopBegin, LoopEnd);
798  }
799  }
800 
801  // Put an extra entry at the end of the indexed context array
802  unsigned exitID = CFGraph->getExit().getBlockID();
803  saveContext(nullptr, BlockInfo[exitID].ExitContext);
804 }
805 
806 /// Find the appropriate source locations to use when producing diagnostics for
807 /// each block in the CFG.
808 static void findBlockLocations(CFG *CFGraph,
809  const PostOrderCFGView *SortedGraph,
810  std::vector<CFGBlockInfo> &BlockInfo) {
811  for (const auto *CurrBlock : *SortedGraph) {
812  CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
813 
814  // Find the source location of the last statement in the block, if the
815  // block is not empty.
816  if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
817  CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
818  } else {
819  for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
820  BE = CurrBlock->rend(); BI != BE; ++BI) {
821  // FIXME: Handle other CFGElement kinds.
822  if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
823  CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
824  break;
825  }
826  }
827  }
828 
829  if (CurrBlockInfo->ExitLoc.isValid()) {
830  // This block contains at least one statement. Find the source location
831  // of the first statement in the block.
832  for (const auto &BI : *CurrBlock) {
833  // FIXME: Handle other CFGElement kinds.
834  if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
835  CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
836  break;
837  }
838  }
839  } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
840  CurrBlock != &CFGraph->getExit()) {
841  // The block is empty, and has a single predecessor. Use its exit
842  // location.
843  CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
844  BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
845  } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) {
846  // The block is empty, and has a single successor. Use its entry
847  // location.
848  CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
849  BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc;
850  }
851  }
852 }
853 
854 namespace {
855 
856 class LockableFactEntry : public FactEntry {
857 public:
858  LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
859  SourceKind Src = Acquired)
860  : FactEntry(CE, LK, Loc, Src) {}
861 
862  void
863  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
864  SourceLocation JoinLoc, LockErrorKind LEK,
865  ThreadSafetyHandler &Handler) const override {
866  if (!asserted() && !negative() && !isUniversal()) {
867  Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc,
868  LEK);
869  }
870  }
871 
872  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
873  ThreadSafetyHandler &Handler) const override {
874  Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(),
875  entry.loc());
876  }
877 
878  void handleUnlock(FactSet &FSet, FactManager &FactMan,
879  const CapabilityExpr &Cp, SourceLocation UnlockLoc,
880  bool FullyRemove,
881  ThreadSafetyHandler &Handler) const override {
882  FSet.removeLock(FactMan, Cp);
883  if (!Cp.negative()) {
884  FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
885  !Cp, LK_Exclusive, UnlockLoc));
886  }
887  }
888 };
889 
890 class ScopedLockableFactEntry : public FactEntry {
891 private:
892  enum UnderlyingCapabilityKind {
893  UCK_Acquired, ///< Any kind of acquired capability.
894  UCK_ReleasedShared, ///< Shared capability that was released.
895  UCK_ReleasedExclusive, ///< Exclusive capability that was released.
896  };
897 
898  struct UnderlyingCapability {
899  CapabilityExpr Cap;
900  UnderlyingCapabilityKind Kind;
901  };
902 
903  SmallVector<UnderlyingCapability, 2> UnderlyingMutexes;
904 
905 public:
906  ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
907  : FactEntry(CE, LK_Exclusive, Loc, Acquired) {}
908 
909  void addLock(const CapabilityExpr &M) {
910  UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired});
911  }
912 
913  void addExclusiveUnlock(const CapabilityExpr &M) {
914  UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive});
915  }
916 
917  void addSharedUnlock(const CapabilityExpr &M) {
918  UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared});
919  }
920 
921  void
922  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
923  SourceLocation JoinLoc, LockErrorKind LEK,
924  ThreadSafetyHandler &Handler) const override {
925  for (const auto &UnderlyingMutex : UnderlyingMutexes) {
926  const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap);
927  if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) ||
928  (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) {
929  // If this scoped lock manages another mutex, and if the underlying
930  // mutex is still/not held, then warn about the underlying mutex.
931  Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(),
932  UnderlyingMutex.Cap.toString(), loc(),
933  JoinLoc, LEK);
934  }
935  }
936  }
937 
938  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
939  ThreadSafetyHandler &Handler) const override {
940  for (const auto &UnderlyingMutex : UnderlyingMutexes) {
941  if (UnderlyingMutex.Kind == UCK_Acquired)
942  lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(),
943  &Handler);
944  else
945  unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler);
946  }
947  }
948 
949  void handleUnlock(FactSet &FSet, FactManager &FactMan,
950  const CapabilityExpr &Cp, SourceLocation UnlockLoc,
951  bool FullyRemove,
952  ThreadSafetyHandler &Handler) const override {
953  assert(!Cp.negative() && "Managing object cannot be negative.");
954  for (const auto &UnderlyingMutex : UnderlyingMutexes) {
955  // Remove/lock the underlying mutex if it exists/is still unlocked; warn
956  // on double unlocking/locking if we're not destroying the scoped object.
957  ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
958  if (UnderlyingMutex.Kind == UCK_Acquired) {
959  unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler);
960  } else {
961  LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared
962  ? LK_Shared
963  : LK_Exclusive;
964  lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler);
965  }
966  }
967  if (FullyRemove)
968  FSet.removeLock(FactMan, Cp);
969  }
970 
971 private:
972  void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
974  ThreadSafetyHandler *Handler) const {
975  if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
976  if (Handler)
977  Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(),
978  loc);
979  } else {
980  FSet.removeLock(FactMan, !Cp);
981  FSet.addLock(FactMan,
982  std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed));
983  }
984  }
985 
986  void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
987  SourceLocation loc, ThreadSafetyHandler *Handler) const {
988  if (FSet.findLock(FactMan, Cp)) {
989  FSet.removeLock(FactMan, Cp);
990  FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
991  !Cp, LK_Exclusive, loc));
992  } else if (Handler) {
993  SourceLocation PrevLoc;
994  if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
995  PrevLoc = Neg->loc();
996  Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc);
997  }
998  }
999 };
1000 
1001 /// Class which implements the core thread safety analysis routines.
1002 class ThreadSafetyAnalyzer {
1003  friend class BuildLockset;
1004  friend class threadSafety::BeforeSet;
1005 
1006  llvm::BumpPtrAllocator Bpa;
1008  threadSafety::SExprBuilder SxBuilder;
1009 
1010  ThreadSafetyHandler &Handler;
1011  const FunctionDecl *CurrentFunction;
1012  LocalVariableMap LocalVarMap;
1013  // Maps constructed objects to `this` placeholder prior to initialization.
1014  llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects;
1015  FactManager FactMan;
1016  std::vector<CFGBlockInfo> BlockInfo;
1017 
1018  BeforeSet *GlobalBeforeSet;
1019 
1020 public:
1021  ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1022  : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1023 
1024  bool inCurrentScope(const CapabilityExpr &CapE);
1025 
1026  void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1027  bool ReqAttr = false);
1028  void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1029  SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind);
1030 
1031  template <typename AttrType>
1032  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1033  const NamedDecl *D, til::SExpr *Self = nullptr);
1034 
1035  template <class AttrType>
1036  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1037  const NamedDecl *D,
1038  const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1039  Expr *BrE, bool Neg);
1040 
1041  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1042  bool &Negate);
1043 
1044  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1045  const CFGBlock* PredBlock,
1046  const CFGBlock *CurrBlock);
1047 
1048  bool join(const FactEntry &a, const FactEntry &b, bool CanModify);
1049 
1050  void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1051  SourceLocation JoinLoc, LockErrorKind EntryLEK,
1052  LockErrorKind ExitLEK);
1053 
1054  void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1055  SourceLocation JoinLoc, LockErrorKind LEK) {
1056  intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK);
1057  }
1058 
1059  void runAnalysis(AnalysisDeclContext &AC);
1060 
1061  void warnIfMutexNotHeld(const FactSet &FSet, const NamedDecl *D,
1062  const Expr *Exp, AccessKind AK, Expr *MutexExp,
1065  void warnIfMutexHeld(const FactSet &FSet, const NamedDecl *D, const Expr *Exp,
1066  Expr *MutexExp, til::LiteralPtr *Self,
1068 
1069  void checkAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1071  void checkPtAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1073 };
1074 
1075 } // namespace
1076 
1077 /// Process acquired_before and acquired_after attributes on Vd.
1078 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1079  ThreadSafetyAnalyzer& Analyzer) {
1080  // Create a new entry for Vd.
1081  BeforeInfo *Info = nullptr;
1082  {
1083  // Keep InfoPtr in its own scope in case BMap is modified later and the
1084  // reference becomes invalid.
1085  std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1086  if (!InfoPtr)
1087  InfoPtr.reset(new BeforeInfo());
1088  Info = InfoPtr.get();
1089  }
1090 
1091  for (const auto *At : Vd->attrs()) {
1092  switch (At->getKind()) {
1093  case attr::AcquiredBefore: {
1094  const auto *A = cast<AcquiredBeforeAttr>(At);
1095 
1096  // Read exprs from the attribute, and add them to BeforeVect.
1097  for (const auto *Arg : A->args()) {
1098  CapabilityExpr Cp =
1099  Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1100  if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1101  Info->Vect.push_back(Cpvd);
1102  const auto It = BMap.find(Cpvd);
1103  if (It == BMap.end())
1104  insertAttrExprs(Cpvd, Analyzer);
1105  }
1106  }
1107  break;
1108  }
1109  case attr::AcquiredAfter: {
1110  const auto *A = cast<AcquiredAfterAttr>(At);
1111 
1112  // Read exprs from the attribute, and add them to BeforeVect.
1113  for (const auto *Arg : A->args()) {
1114  CapabilityExpr Cp =
1115  Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1116  if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1117  // Get entry for mutex listed in attribute
1118  BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1119  ArgInfo->Vect.push_back(Vd);
1120  }
1121  }
1122  break;
1123  }
1124  default:
1125  break;
1126  }
1127  }
1128 
1129  return Info;
1130 }
1131 
1132 BeforeSet::BeforeInfo *
1134  ThreadSafetyAnalyzer &Analyzer) {
1135  auto It = BMap.find(Vd);
1136  BeforeInfo *Info = nullptr;
1137  if (It == BMap.end())
1138  Info = insertAttrExprs(Vd, Analyzer);
1139  else
1140  Info = It->second.get();
1141  assert(Info && "BMap contained nullptr?");
1142  return Info;
1143 }
1144 
1145 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1147  const FactSet& FSet,
1148  ThreadSafetyAnalyzer& Analyzer,
1149  SourceLocation Loc, StringRef CapKind) {
1150  SmallVector<BeforeInfo*, 8> InfoVect;
1151 
1152  // Do a depth-first traversal of Vd.
1153  // Return true if there are cycles.
1154  std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1155  if (!Vd)
1156  return false;
1157 
1158  BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1159 
1160  if (Info->Visited == 1)
1161  return true;
1162 
1163  if (Info->Visited == 2)
1164  return false;
1165 
1166  if (Info->Vect.empty())
1167  return false;
1168 
1169  InfoVect.push_back(Info);
1170  Info->Visited = 1;
1171  for (const auto *Vdb : Info->Vect) {
1172  // Exclude mutexes in our immediate before set.
1173  if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1174  StringRef L1 = StartVd->getName();
1175  StringRef L2 = Vdb->getName();
1176  Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1177  }
1178  // Transitively search other before sets, and warn on cycles.
1179  if (traverse(Vdb)) {
1180  if (!CycMap.contains(Vd)) {
1181  CycMap.insert(std::make_pair(Vd, true));
1182  StringRef L1 = Vd->getName();
1183  Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1184  }
1185  }
1186  }
1187  Info->Visited = 2;
1188  return false;
1189  };
1190 
1191  traverse(StartVd);
1192 
1193  for (auto *Info : InfoVect)
1194  Info->Visited = 0;
1195 }
1196 
1197 /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1198 static const ValueDecl *getValueDecl(const Expr *Exp) {
1199  if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1200  return getValueDecl(CE->getSubExpr());
1201 
1202  if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1203  return DR->getDecl();
1204 
1205  if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1206  return ME->getMemberDecl();
1207 
1208  return nullptr;
1209 }
1210 
1211 namespace {
1212 
1213 template <typename Ty>
1214 class has_arg_iterator_range {
1215  using yes = char[1];
1216  using no = char[2];
1217 
1218  template <typename Inner>
1219  static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1220 
1221  template <typename>
1222  static no& test(...);
1223 
1224 public:
1225  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1226 };
1227 
1228 } // namespace
1229 
1230 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1231  const threadSafety::til::SExpr *SExp = CapE.sexpr();
1232  assert(SExp && "Null expressions should be ignored");
1233 
1234  if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1235  const ValueDecl *VD = LP->clangDecl();
1236  // Variables defined in a function are always inaccessible.
1237  if (!VD || !VD->isDefinedOutsideFunctionOrMethod())
1238  return false;
1239  // For now we consider static class members to be inaccessible.
1240  if (isa<CXXRecordDecl>(VD->getDeclContext()))
1241  return false;
1242  // Global variables are always in scope.
1243  return true;
1244  }
1245 
1246  // Members are in scope from methods of the same class.
1247  if (const auto *P = dyn_cast<til::Project>(SExp)) {
1248  if (!isa_and_nonnull<CXXMethodDecl>(CurrentFunction))
1249  return false;
1250  const ValueDecl *VD = P->clangDecl();
1251  return VD->getDeclContext() == CurrentFunction->getDeclContext();
1252  }
1253 
1254  return false;
1255 }
1256 
1257 /// Add a new lock to the lockset, warning if the lock is already there.
1258 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
1259 void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1260  std::unique_ptr<FactEntry> Entry,
1261  bool ReqAttr) {
1262  if (Entry->shouldIgnore())
1263  return;
1264 
1265  if (!ReqAttr && !Entry->negative()) {
1266  // look for the negative capability, and remove it from the fact set.
1267  CapabilityExpr NegC = !*Entry;
1268  const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1269  if (Nen) {
1270  FSet.removeLock(FactMan, NegC);
1271  }
1272  else {
1273  if (inCurrentScope(*Entry) && !Entry->asserted())
1274  Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(),
1275  NegC.toString(), Entry->loc());
1276  }
1277  }
1278 
1279  // Check before/after constraints
1280  if (Handler.issueBetaWarnings() &&
1281  !Entry->asserted() && !Entry->declared()) {
1282  GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1283  Entry->loc(), Entry->getKind());
1284  }
1285 
1286  // FIXME: Don't always warn when we have support for reentrant locks.
1287  if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1288  if (!Entry->asserted())
1289  Cp->handleLock(FSet, FactMan, *Entry, Handler);
1290  } else {
1291  FSet.addLock(FactMan, std::move(Entry));
1292  }
1293 }
1294 
1295 /// Remove a lock from the lockset, warning if the lock is not there.
1296 /// \param UnlockLoc The source location of the unlock (only used in error msg)
1297 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1298  SourceLocation UnlockLoc,
1299  bool FullyRemove, LockKind ReceivedKind) {
1300  if (Cp.shouldIgnore())
1301  return;
1302 
1303  const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1304  if (!LDat) {
1305  SourceLocation PrevLoc;
1306  if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1307  PrevLoc = Neg->loc();
1308  Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc,
1309  PrevLoc);
1310  return;
1311  }
1312 
1313  // Generic lock removal doesn't care about lock kind mismatches, but
1314  // otherwise diagnose when the lock kinds are mismatched.
1315  if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1316  Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(),
1317  ReceivedKind, LDat->loc(), UnlockLoc);
1318  }
1319 
1320  LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler);
1321 }
1322 
1323 /// Extract the list of mutexIDs from the attribute on an expression,
1324 /// and push them onto Mtxs, discarding any duplicates.
1325 template <typename AttrType>
1326 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1327  const Expr *Exp, const NamedDecl *D,
1328  til::SExpr *Self) {
1329  if (Attr->args_size() == 0) {
1330  // The mutex held is the "this" object.
1331  CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self);
1332  if (Cp.isInvalid()) {
1333  warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1334  return;
1335  }
1336  //else
1337  if (!Cp.shouldIgnore())
1338  Mtxs.push_back_nodup(Cp);
1339  return;
1340  }
1341 
1342  for (const auto *Arg : Attr->args()) {
1343  CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self);
1344  if (Cp.isInvalid()) {
1345  warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1346  continue;
1347  }
1348  //else
1349  if (!Cp.shouldIgnore())
1350  Mtxs.push_back_nodup(Cp);
1351  }
1352 }
1353 
1354 /// Extract the list of mutexIDs from a trylock attribute. If the
1355 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1356 /// any duplicates.
1357 template <class AttrType>
1358 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1359  const Expr *Exp, const NamedDecl *D,
1360  const CFGBlock *PredBlock,
1361  const CFGBlock *CurrBlock,
1362  Expr *BrE, bool Neg) {
1363  // Find out which branch has the lock
1364  bool branch = false;
1365  if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1366  branch = BLE->getValue();
1367  else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1368  branch = ILE->getValue().getBoolValue();
1369 
1370  int branchnum = branch ? 0 : 1;
1371  if (Neg)
1372  branchnum = !branchnum;
1373 
1374  // If we've taken the trylock branch, then add the lock
1375  int i = 0;
1376  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1377  SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1378  if (*SI == CurrBlock && i == branchnum)
1379  getMutexIDs(Mtxs, Attr, Exp, D);
1380  }
1381 }
1382 
1383 static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1384  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1385  TCond = false;
1386  return true;
1387  } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1388  TCond = BLE->getValue();
1389  return true;
1390  } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1391  TCond = ILE->getValue().getBoolValue();
1392  return true;
1393  } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1394  return getStaticBooleanValue(CE->getSubExpr(), TCond);
1395  return false;
1396 }
1397 
1398 // If Cond can be traced back to a function call, return the call expression.
1399 // The negate variable should be called with false, and will be set to true
1400 // if the function call is negated, e.g. if (!mu.tryLock(...))
1401 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1402  LocalVarContext C,
1403  bool &Negate) {
1404  if (!Cond)
1405  return nullptr;
1406 
1407  if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1408  if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1409  return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1410  return CallExp;
1411  }
1412  else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1413  return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1414  else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1415  return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1416  else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1417  return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1418  else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1419  const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1420  return getTrylockCallExpr(E, C, Negate);
1421  }
1422  else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1423  if (UOP->getOpcode() == UO_LNot) {
1424  Negate = !Negate;
1425  return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1426  }
1427  return nullptr;
1428  }
1429  else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1430  if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1431  if (BOP->getOpcode() == BO_NE)
1432  Negate = !Negate;
1433 
1434  bool TCond = false;
1435  if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1436  if (!TCond) Negate = !Negate;
1437  return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1438  }
1439  TCond = false;
1440  if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1441  if (!TCond) Negate = !Negate;
1442  return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1443  }
1444  return nullptr;
1445  }
1446  if (BOP->getOpcode() == BO_LAnd) {
1447  // LHS must have been evaluated in a different block.
1448  return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1449  }
1450  if (BOP->getOpcode() == BO_LOr)
1451  return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1452  return nullptr;
1453  } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1454  bool TCond, FCond;
1455  if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1456  getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1457  if (TCond && !FCond)
1458  return getTrylockCallExpr(COP->getCond(), C, Negate);
1459  if (!TCond && FCond) {
1460  Negate = !Negate;
1461  return getTrylockCallExpr(COP->getCond(), C, Negate);
1462  }
1463  }
1464  }
1465  return nullptr;
1466 }
1467 
1468 /// Find the lockset that holds on the edge between PredBlock
1469 /// and CurrBlock. The edge set is the exit set of PredBlock (passed
1470 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1471 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1472  const FactSet &ExitSet,
1473  const CFGBlock *PredBlock,
1474  const CFGBlock *CurrBlock) {
1475  Result = ExitSet;
1476 
1477  const Stmt *Cond = PredBlock->getTerminatorCondition();
1478  // We don't acquire try-locks on ?: branches, only when its result is used.
1479  if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1480  return;
1481 
1482  bool Negate = false;
1483  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1484  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1485 
1486  const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1487  if (!Exp)
1488  return;
1489 
1490  auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1491  if(!FunDecl || !FunDecl->hasAttrs())
1492  return;
1493 
1494  CapExprSet ExclusiveLocksToAdd;
1495  CapExprSet SharedLocksToAdd;
1496 
1497  // If the condition is a call to a Trylock function, then grab the attributes
1498  for (const auto *Attr : FunDecl->attrs()) {
1499  switch (Attr->getKind()) {
1500  case attr::TryAcquireCapability: {
1501  auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1502  getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1503  Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1504  Negate);
1505  break;
1506  };
1507  case attr::ExclusiveTrylockFunction: {
1508  const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1509  getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1510  A->getSuccessValue(), Negate);
1511  break;
1512  }
1513  case attr::SharedTrylockFunction: {
1514  const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1515  getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1516  A->getSuccessValue(), Negate);
1517  break;
1518  }
1519  default:
1520  break;
1521  }
1522  }
1523 
1524  // Add and remove locks.
1525  SourceLocation Loc = Exp->getExprLoc();
1526  for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1527  addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1528  LK_Exclusive, Loc));
1529  for (const auto &SharedLockToAdd : SharedLocksToAdd)
1530  addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1531  LK_Shared, Loc));
1532 }
1533 
1534 namespace {
1535 
1536 /// We use this class to visit different types of expressions in
1537 /// CFGBlocks, and build up the lockset.
1538 /// An expression may cause us to add or remove locks from the lockset, or else
1539 /// output error messages related to missing locks.
1540 /// FIXME: In future, we may be able to not inherit from a visitor.
1541 class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1542  friend class ThreadSafetyAnalyzer;
1543 
1544  ThreadSafetyAnalyzer *Analyzer;
1545  FactSet FSet;
1546  // The fact set for the function on exit.
1547  const FactSet &FunctionExitFSet;
1548  LocalVariableMap::Context LVarCtx;
1549  unsigned CtxIndex;
1550 
1551  // helper functions
1552 
1553  void checkAccess(const Expr *Exp, AccessKind AK,
1555  Analyzer->checkAccess(FSet, Exp, AK, POK);
1556  }
1557  void checkPtAccess(const Expr *Exp, AccessKind AK,
1559  Analyzer->checkPtAccess(FSet, Exp, AK, POK);
1560  }
1561 
1562  void handleCall(const Expr *Exp, const NamedDecl *D,
1563  til::LiteralPtr *Self = nullptr,
1565  void examineArguments(const FunctionDecl *FD,
1568  bool SkipFirstParam = false);
1569 
1570 public:
1571  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info,
1572  const FactSet &FunctionExitFSet)
1573  : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1574  FunctionExitFSet(FunctionExitFSet), LVarCtx(Info.EntryContext),
1575  CtxIndex(Info.EntryIndex) {}
1576 
1577  void VisitUnaryOperator(const UnaryOperator *UO);
1578  void VisitBinaryOperator(const BinaryOperator *BO);
1579  void VisitCastExpr(const CastExpr *CE);
1580  void VisitCallExpr(const CallExpr *Exp);
1581  void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1582  void VisitDeclStmt(const DeclStmt *S);
1583  void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp);
1584  void VisitReturnStmt(const ReturnStmt *S);
1585 };
1586 
1587 } // namespace
1588 
1589 /// Warn if the LSet does not contain a lock sufficient to protect access
1590 /// of at least the passed in AccessKind.
1591 void ThreadSafetyAnalyzer::warnIfMutexNotHeld(
1592  const FactSet &FSet, const NamedDecl *D, const Expr *Exp, AccessKind AK,
1593  Expr *MutexExp, ProtectedOperationKind POK, til::LiteralPtr *Self,
1594  SourceLocation Loc) {
1596  CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1597  if (Cp.isInvalid()) {
1598  warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind());
1599  return;
1600  } else if (Cp.shouldIgnore()) {
1601  return;
1602  }
1603 
1604  if (Cp.negative()) {
1605  // Negative capabilities act like locks excluded
1606  const FactEntry *LDat = FSet.findLock(FactMan, !Cp);
1607  if (LDat) {
1608  Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1609  (!Cp).toString(), Loc);
1610  return;
1611  }
1612 
1613  // If this does not refer to a negative capability in the same class,
1614  // then stop here.
1615  if (!inCurrentScope(Cp))
1616  return;
1617 
1618  // Otherwise the negative requirement must be propagated to the caller.
1619  LDat = FSet.findLock(FactMan, Cp);
1620  if (!LDat) {
1621  Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1622  }
1623  return;
1624  }
1625 
1626  const FactEntry *LDat = FSet.findLockUniv(FactMan, Cp);
1627  bool NoError = true;
1628  if (!LDat) {
1629  // No exact match found. Look for a partial match.
1630  LDat = FSet.findPartialMatch(FactMan, Cp);
1631  if (LDat) {
1632  // Warn that there's no precise match.
1633  std::string PartMatchStr = LDat->toString();
1634  StringRef PartMatchName(PartMatchStr);
1635  Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc,
1636  &PartMatchName);
1637  } else {
1638  // Warn that there's no match at all.
1639  Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc);
1640  }
1641  NoError = false;
1642  }
1643  // Make sure the mutex we found is the right kind.
1644  if (NoError && LDat && !LDat->isAtLeast(LK)) {
1645  Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc);
1646  }
1647 }
1648 
1649 /// Warn if the LSet contains the given lock.
1650 void ThreadSafetyAnalyzer::warnIfMutexHeld(const FactSet &FSet,
1651  const NamedDecl *D, const Expr *Exp,
1652  Expr *MutexExp,
1653  til::LiteralPtr *Self,
1654  SourceLocation Loc) {
1655  CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1656  if (Cp.isInvalid()) {
1657  warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind());
1658  return;
1659  } else if (Cp.shouldIgnore()) {
1660  return;
1661  }
1662 
1663  const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1664  if (LDat) {
1665  Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1666  Cp.toString(), Loc);
1667  }
1668 }
1669 
1670 /// Checks guarded_by and pt_guarded_by attributes.
1671 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1672 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1673 /// Similarly, we check if the access is to an expression that dereferences
1674 /// a pointer marked with pt_guarded_by.
1675 void ThreadSafetyAnalyzer::checkAccess(const FactSet &FSet, const Expr *Exp,
1676  AccessKind AK,
1677  ProtectedOperationKind POK) {
1678  Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1679 
1680  SourceLocation Loc = Exp->getExprLoc();
1681 
1682  // Local variables of reference type cannot be re-assigned;
1683  // map them to their initializer.
1684  while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1685  const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1686  if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1687  if (const auto *E = VD->getInit()) {
1688  // Guard against self-initialization. e.g., int &i = i;
1689  if (E == Exp)
1690  break;
1691  Exp = E;
1692  continue;
1693  }
1694  }
1695  break;
1696  }
1697 
1698  if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1699  // For dereferences
1700  if (UO->getOpcode() == UO_Deref)
1701  checkPtAccess(FSet, UO->getSubExpr(), AK, POK);
1702  return;
1703  }
1704 
1705  if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) {
1706  switch (BO->getOpcode()) {
1707  case BO_PtrMemD: // .*
1708  return checkAccess(FSet, BO->getLHS(), AK, POK);
1709  case BO_PtrMemI: // ->*
1710  return checkPtAccess(FSet, BO->getLHS(), AK, POK);
1711  default:
1712  return;
1713  }
1714  }
1715 
1716  if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1717  checkPtAccess(FSet, AE->getLHS(), AK, POK);
1718  return;
1719  }
1720 
1721  if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1722  if (ME->isArrow())
1723  checkPtAccess(FSet, ME->getBase(), AK, POK);
1724  else
1725  checkAccess(FSet, ME->getBase(), AK, POK);
1726  }
1727 
1728  const ValueDecl *D = getValueDecl(Exp);
1729  if (!D || !D->hasAttrs())
1730  return;
1731 
1732  if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(FactMan)) {
1733  Handler.handleNoMutexHeld(D, POK, AK, Loc);
1734  }
1735 
1736  for (const auto *I : D->specific_attrs<GuardedByAttr>())
1737  warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), POK, nullptr, Loc);
1738 }
1739 
1740 /// Checks pt_guarded_by and pt_guarded_var attributes.
1741 /// POK is the same operationKind that was passed to checkAccess.
1742 void ThreadSafetyAnalyzer::checkPtAccess(const FactSet &FSet, const Expr *Exp,
1743  AccessKind AK,
1744  ProtectedOperationKind POK) {
1745  while (true) {
1746  if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1747  Exp = PE->getSubExpr();
1748  continue;
1749  }
1750  if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1751  if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1752  // If it's an actual array, and not a pointer, then it's elements
1753  // are protected by GUARDED_BY, not PT_GUARDED_BY;
1754  checkAccess(FSet, CE->getSubExpr(), AK, POK);
1755  return;
1756  }
1757  Exp = CE->getSubExpr();
1758  continue;
1759  }
1760  break;
1761  }
1762 
1763  // Pass by reference warnings are under a different flag.
1765  if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1766  if (POK == POK_ReturnByRef)
1767  PtPOK = POK_PtReturnByRef;
1768 
1769  const ValueDecl *D = getValueDecl(Exp);
1770  if (!D || !D->hasAttrs())
1771  return;
1772 
1773  if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(FactMan))
1774  Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc());
1775 
1776  for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1777  warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), PtPOK, nullptr,
1778  Exp->getExprLoc());
1779 }
1780 
1781 /// Process a function call, method call, constructor call,
1782 /// or destructor call. This involves looking at the attributes on the
1783 /// corresponding function/method/constructor/destructor, issuing warnings,
1784 /// and updating the locksets accordingly.
1785 ///
1786 /// FIXME: For classes annotated with one of the guarded annotations, we need
1787 /// to treat const method calls as reads and non-const method calls as writes,
1788 /// and check that the appropriate locks are held. Non-const method calls with
1789 /// the same signature as const method calls can be also treated as reads.
1790 ///
1791 /// \param Exp The call expression.
1792 /// \param D The callee declaration.
1793 /// \param Self If \p Exp = nullptr, the implicit this argument or the argument
1794 /// of an implicitly called cleanup function.
1795 /// \param Loc If \p Exp = nullptr, the location.
1796 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1798  CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1799  CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1800  CapExprSet ScopedReqsAndExcludes;
1801 
1802  // Figure out if we're constructing an object of scoped lockable class
1803  CapabilityExpr Scp;
1804  if (Exp) {
1805  assert(!Self);
1806  const auto *TagT = Exp->getType()->getAs<TagType>();
1807  if (TagT && Exp->isPRValue()) {
1808  std::pair<til::LiteralPtr *, StringRef> Placeholder =
1809  Analyzer->SxBuilder.createThisPlaceholder(Exp);
1810  [[maybe_unused]] auto inserted =
1811  Analyzer->ConstructedObjects.insert({Exp, Placeholder.first});
1812  assert(inserted.second && "Are we visiting the same expression again?");
1813  if (isa<CXXConstructExpr>(Exp))
1814  Self = Placeholder.first;
1815  if (TagT->getDecl()->hasAttr<ScopedLockableAttr>())
1816  Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false);
1817  }
1818 
1819  assert(Loc.isInvalid());
1820  Loc = Exp->getExprLoc();
1821  }
1822 
1823  for(const Attr *At : D->attrs()) {
1824  switch (At->getKind()) {
1825  // When we encounter a lock function, we need to add the lock to our
1826  // lockset.
1827  case attr::AcquireCapability: {
1828  const auto *A = cast<AcquireCapabilityAttr>(At);
1829  Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1830  : ExclusiveLocksToAdd,
1831  A, Exp, D, Self);
1832  break;
1833  }
1834 
1835  // An assert will add a lock to the lockset, but will not generate
1836  // a warning if it is already there, and will not generate a warning
1837  // if it is not removed.
1838  case attr::AssertExclusiveLock: {
1839  const auto *A = cast<AssertExclusiveLockAttr>(At);
1840 
1841  CapExprSet AssertLocks;
1842  Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1843  for (const auto &AssertLock : AssertLocks)
1844  Analyzer->addLock(
1845  FSet, std::make_unique<LockableFactEntry>(
1846  AssertLock, LK_Exclusive, Loc, FactEntry::Asserted));
1847  break;
1848  }
1849  case attr::AssertSharedLock: {
1850  const auto *A = cast<AssertSharedLockAttr>(At);
1851 
1852  CapExprSet AssertLocks;
1853  Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1854  for (const auto &AssertLock : AssertLocks)
1855  Analyzer->addLock(
1856  FSet, std::make_unique<LockableFactEntry>(
1857  AssertLock, LK_Shared, Loc, FactEntry::Asserted));
1858  break;
1859  }
1860 
1861  case attr::AssertCapability: {
1862  const auto *A = cast<AssertCapabilityAttr>(At);
1863  CapExprSet AssertLocks;
1864  Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1865  for (const auto &AssertLock : AssertLocks)
1866  Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1867  AssertLock,
1868  A->isShared() ? LK_Shared : LK_Exclusive,
1869  Loc, FactEntry::Asserted));
1870  break;
1871  }
1872 
1873  // When we encounter an unlock function, we need to remove unlocked
1874  // mutexes from the lockset, and flag a warning if they are not there.
1875  case attr::ReleaseCapability: {
1876  const auto *A = cast<ReleaseCapabilityAttr>(At);
1877  if (A->isGeneric())
1878  Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self);
1879  else if (A->isShared())
1880  Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self);
1881  else
1882  Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self);
1883  break;
1884  }
1885 
1886  case attr::RequiresCapability: {
1887  const auto *A = cast<RequiresCapabilityAttr>(At);
1888  for (auto *Arg : A->args()) {
1889  Analyzer->warnIfMutexNotHeld(FSet, D, Exp,
1890  A->isShared() ? AK_Read : AK_Written,
1891  Arg, POK_FunctionCall, Self, Loc);
1892  // use for adopting a lock
1893  if (!Scp.shouldIgnore())
1894  Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1895  }
1896  break;
1897  }
1898 
1899  case attr::LocksExcluded: {
1900  const auto *A = cast<LocksExcludedAttr>(At);
1901  for (auto *Arg : A->args()) {
1902  Analyzer->warnIfMutexHeld(FSet, D, Exp, Arg, Self, Loc);
1903  // use for deferring a lock
1904  if (!Scp.shouldIgnore())
1905  Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1906  }
1907  break;
1908  }
1909 
1910  // Ignore attributes unrelated to thread-safety
1911  default:
1912  break;
1913  }
1914  }
1915 
1916  // Remove locks first to allow lock upgrading/downgrading.
1917  // FIXME -- should only fully remove if the attribute refers to 'this'.
1918  bool Dtor = isa<CXXDestructorDecl>(D);
1919  for (const auto &M : ExclusiveLocksToRemove)
1920  Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive);
1921  for (const auto &M : SharedLocksToRemove)
1922  Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared);
1923  for (const auto &M : GenericLocksToRemove)
1924  Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic);
1925 
1926  // Add locks.
1927  FactEntry::SourceKind Source =
1928  !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired;
1929  for (const auto &M : ExclusiveLocksToAdd)
1930  Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive,
1931  Loc, Source));
1932  for (const auto &M : SharedLocksToAdd)
1933  Analyzer->addLock(
1934  FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source));
1935 
1936  if (!Scp.shouldIgnore()) {
1937  // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1938  auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc);
1939  for (const auto &M : ExclusiveLocksToAdd)
1940  ScopedEntry->addLock(M);
1941  for (const auto &M : SharedLocksToAdd)
1942  ScopedEntry->addLock(M);
1943  for (const auto &M : ScopedReqsAndExcludes)
1944  ScopedEntry->addLock(M);
1945  for (const auto &M : ExclusiveLocksToRemove)
1946  ScopedEntry->addExclusiveUnlock(M);
1947  for (const auto &M : SharedLocksToRemove)
1948  ScopedEntry->addSharedUnlock(M);
1949  Analyzer->addLock(FSet, std::move(ScopedEntry));
1950  }
1951 }
1952 
1953 /// For unary operations which read and write a variable, we need to
1954 /// check whether we hold any required mutexes. Reads are checked in
1955 /// VisitCastExpr.
1956 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1957  switch (UO->getOpcode()) {
1958  case UO_PostDec:
1959  case UO_PostInc:
1960  case UO_PreDec:
1961  case UO_PreInc:
1962  checkAccess(UO->getSubExpr(), AK_Written);
1963  break;
1964  default:
1965  break;
1966  }
1967 }
1968 
1969 /// For binary operations which assign to a variable (writes), we need to check
1970 /// whether we hold any required mutexes.
1971 /// FIXME: Deal with non-primitive types.
1972 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
1973  if (!BO->isAssignmentOp())
1974  return;
1975 
1976  // adjust the context
1977  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1978 
1979  checkAccess(BO->getLHS(), AK_Written);
1980 }
1981 
1982 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1983 /// need to ensure we hold any required mutexes.
1984 /// FIXME: Deal with non-primitive types.
1985 void BuildLockset::VisitCastExpr(const CastExpr *CE) {
1986  if (CE->getCastKind() != CK_LValueToRValue)
1987  return;
1988  checkAccess(CE->getSubExpr(), AK_Read);
1989 }
1990 
1991 void BuildLockset::examineArguments(const FunctionDecl *FD,
1994  bool SkipFirstParam) {
1995  // Currently we can't do anything if we don't know the function declaration.
1996  if (!FD)
1997  return;
1998 
1999  // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it
2000  // only turns off checking within the body of a function, but we also
2001  // use it to turn off checking in arguments to the function. This
2002  // could result in some false negatives, but the alternative is to
2003  // create yet another attribute.
2004  if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
2005  return;
2006 
2007  const ArrayRef<ParmVarDecl *> Params = FD->parameters();
2008  auto Param = Params.begin();
2009  if (SkipFirstParam)
2010  ++Param;
2011 
2012  // There can be default arguments, so we stop when one iterator is at end().
2013  for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
2014  ++Param, ++Arg) {
2015  QualType Qt = (*Param)->getType();
2016  if (Qt->isReferenceType())
2017  checkAccess(*Arg, AK_Read, POK_PassByRef);
2018  }
2019 }
2020 
2021 void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2022  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2023  const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2024  // ME can be null when calling a method pointer
2025  const CXXMethodDecl *MD = CE->getMethodDecl();
2026 
2027  if (ME && MD) {
2028  if (ME->isArrow()) {
2029  // Should perhaps be AK_Written if !MD->isConst().
2030  checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2031  } else {
2032  // Should perhaps be AK_Written if !MD->isConst().
2033  checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2034  }
2035  }
2036 
2037  examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2038  } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2039  OverloadedOperatorKind OEop = OE->getOperator();
2040  switch (OEop) {
2041  case OO_Equal:
2042  case OO_PlusEqual:
2043  case OO_MinusEqual:
2044  case OO_StarEqual:
2045  case OO_SlashEqual:
2046  case OO_PercentEqual:
2047  case OO_CaretEqual:
2048  case OO_AmpEqual:
2049  case OO_PipeEqual:
2050  case OO_LessLessEqual:
2051  case OO_GreaterGreaterEqual:
2052  checkAccess(OE->getArg(1), AK_Read);
2053  [[fallthrough]];
2054  case OO_PlusPlus:
2055  case OO_MinusMinus:
2056  checkAccess(OE->getArg(0), AK_Written);
2057  break;
2058  case OO_Star:
2059  case OO_ArrowStar:
2060  case OO_Arrow:
2061  case OO_Subscript:
2062  if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2063  // Grrr. operator* can be multiplication...
2064  checkPtAccess(OE->getArg(0), AK_Read);
2065  }
2066  [[fallthrough]];
2067  default: {
2068  // TODO: get rid of this, and rely on pass-by-ref instead.
2069  const Expr *Obj = OE->getArg(0);
2070  checkAccess(Obj, AK_Read);
2071  // Check the remaining arguments. For method operators, the first
2072  // argument is the implicit self argument, and doesn't appear in the
2073  // FunctionDecl, but for non-methods it does.
2074  const FunctionDecl *FD = OE->getDirectCallee();
2075  examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2076  /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2077  break;
2078  }
2079  }
2080  } else {
2081  examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2082  }
2083 
2084  auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2085  if(!D || !D->hasAttrs())
2086  return;
2087  handleCall(Exp, D);
2088 }
2089 
2090 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2091  const CXXConstructorDecl *D = Exp->getConstructor();
2092  if (D && D->isCopyConstructor()) {
2093  const Expr* Source = Exp->getArg(0);
2094  checkAccess(Source, AK_Read);
2095  } else {
2096  examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2097  }
2098  if (D && D->hasAttrs())
2099  handleCall(Exp, D);
2100 }
2101 
2102 static const Expr *UnpackConstruction(const Expr *E) {
2103  if (auto *CE = dyn_cast<CastExpr>(E))
2104  if (CE->getCastKind() == CK_NoOp)
2105  E = CE->getSubExpr()->IgnoreParens();
2106  if (auto *CE = dyn_cast<CastExpr>(E))
2107  if (CE->getCastKind() == CK_ConstructorConversion ||
2108  CE->getCastKind() == CK_UserDefinedConversion)
2109  E = CE->getSubExpr();
2110  if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2111  E = BTE->getSubExpr();
2112  return E;
2113 }
2114 
2115 void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2116  // adjust the context
2117  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2118 
2119  for (auto *D : S->getDeclGroup()) {
2120  if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2121  const Expr *E = VD->getInit();
2122  if (!E)
2123  continue;
2124  E = E->IgnoreParens();
2125 
2126  // handle constructors that involve temporaries
2127  if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2128  E = EWC->getSubExpr()->IgnoreParens();
2129  E = UnpackConstruction(E);
2130 
2131  if (auto Object = Analyzer->ConstructedObjects.find(E);
2132  Object != Analyzer->ConstructedObjects.end()) {
2133  Object->second->setClangDecl(VD);
2134  Analyzer->ConstructedObjects.erase(Object);
2135  }
2136  }
2137  }
2138 }
2139 
2140 void BuildLockset::VisitMaterializeTemporaryExpr(
2141  const MaterializeTemporaryExpr *Exp) {
2142  if (const ValueDecl *ExtD = Exp->getExtendingDecl()) {
2143  if (auto Object = Analyzer->ConstructedObjects.find(
2144  UnpackConstruction(Exp->getSubExpr()));
2145  Object != Analyzer->ConstructedObjects.end()) {
2146  Object->second->setClangDecl(ExtD);
2147  Analyzer->ConstructedObjects.erase(Object);
2148  }
2149  }
2150 }
2151 
2152 void BuildLockset::VisitReturnStmt(const ReturnStmt *S) {
2153  if (Analyzer->CurrentFunction == nullptr)
2154  return;
2155  const Expr *RetVal = S->getRetValue();
2156  if (!RetVal)
2157  return;
2158 
2159  // If returning by reference, check that the function requires the appropriate
2160  // capabilities.
2161  const QualType ReturnType =
2162  Analyzer->CurrentFunction->getReturnType().getCanonicalType();
2163  if (ReturnType->isLValueReferenceType()) {
2164  Analyzer->checkAccess(
2165  FunctionExitFSet, RetVal,
2166  ReturnType->getPointeeType().isConstQualified() ? AK_Read : AK_Written,
2167  POK_ReturnByRef);
2168  }
2169 }
2170 
2171 /// Given two facts merging on a join point, possibly warn and decide whether to
2172 /// keep or replace.
2173 ///
2174 /// \param CanModify Whether we can replace \p A by \p B.
2175 /// \return false if we should keep \p A, true if we should take \p B.
2176 bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B,
2177  bool CanModify) {
2178  if (A.kind() != B.kind()) {
2179  // For managed capabilities, the destructor should unlock in the right mode
2180  // anyway. For asserted capabilities no unlocking is needed.
2181  if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) {
2182  // The shared capability subsumes the exclusive capability, if possible.
2183  bool ShouldTakeB = B.kind() == LK_Shared;
2184  if (CanModify || !ShouldTakeB)
2185  return ShouldTakeB;
2186  }
2187  Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(),
2188  A.loc());
2189  // Take the exclusive capability to reduce further warnings.
2190  return CanModify && B.kind() == LK_Exclusive;
2191  } else {
2192  // The non-asserted capability is the one we want to track.
2193  return CanModify && A.asserted() && !B.asserted();
2194  }
2195 }
2196 
2197 /// Compute the intersection of two locksets and issue warnings for any
2198 /// locks in the symmetric difference.
2199 ///
2200 /// This function is used at a merge point in the CFG when comparing the lockset
2201 /// of each branch being merged. For example, given the following sequence:
2202 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2203 /// are the same. In the event of a difference, we use the intersection of these
2204 /// two locksets at the start of D.
2205 ///
2206 /// \param EntrySet A lockset for entry into a (possibly new) block.
2207 /// \param ExitSet The lockset on exiting a preceding block.
2208 /// \param JoinLoc The location of the join point for error reporting
2209 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet.
2210 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet.
2211 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet,
2212  const FactSet &ExitSet,
2213  SourceLocation JoinLoc,
2214  LockErrorKind EntryLEK,
2215  LockErrorKind ExitLEK) {
2216  FactSet EntrySetOrig = EntrySet;
2217 
2218  // Find locks in ExitSet that conflict or are not in EntrySet, and warn.
2219  for (const auto &Fact : ExitSet) {
2220  const FactEntry &ExitFact = FactMan[Fact];
2221 
2222  FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact);
2223  if (EntryIt != EntrySet.end()) {
2224  if (join(FactMan[*EntryIt], ExitFact,
2225  EntryLEK != LEK_LockedSomeLoopIterations))
2226  *EntryIt = Fact;
2227  } else if (!ExitFact.managed()) {
2228  ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc,
2229  EntryLEK, Handler);
2230  }
2231  }
2232 
2233  // Find locks in EntrySet that are not in ExitSet, and remove them.
2234  for (const auto &Fact : EntrySetOrig) {
2235  const FactEntry *EntryFact = &FactMan[Fact];
2236  const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact);
2237 
2238  if (!ExitFact) {
2239  if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations)
2240  EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc,
2241  ExitLEK, Handler);
2242  if (ExitLEK == LEK_LockedSomePredecessors)
2243  EntrySet.removeLock(FactMan, *EntryFact);
2244  }
2245  }
2246 }
2247 
2248 // Return true if block B never continues to its successors.
2249 static bool neverReturns(const CFGBlock *B) {
2250  if (B->hasNoReturnElement())
2251  return true;
2252  if (B->empty())
2253  return false;
2254 
2255  CFGElement Last = B->back();
2256  if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2257  if (isa<CXXThrowExpr>(S->getStmt()))
2258  return true;
2259  }
2260  return false;
2261 }
2262 
2263 /// Check a function's CFG for thread-safety violations.
2264 ///
2265 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2266 /// at the end of each block, and issue warnings for thread safety violations.
2267 /// Each block in the CFG is traversed exactly once.
2268 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2269  // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2270  // For now, we just use the walker to set things up.
2271  threadSafety::CFGWalker walker;
2272  if (!walker.init(AC))
2273  return;
2274 
2275  // AC.dumpCFG(true);
2276  // threadSafety::printSCFG(walker);
2277 
2278  CFG *CFGraph = walker.getGraph();
2279  const NamedDecl *D = walker.getDecl();
2280  CurrentFunction = dyn_cast<FunctionDecl>(D);
2281 
2282  if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2283  return;
2284 
2285  // FIXME: Do something a bit more intelligent inside constructor and
2286  // destructor code. Constructors and destructors must assume unique access
2287  // to 'this', so checks on member variable access is disabled, but we should
2288  // still enable checks on other objects.
2289  if (isa<CXXConstructorDecl>(D))
2290  return; // Don't check inside constructors.
2291  if (isa<CXXDestructorDecl>(D))
2292  return; // Don't check inside destructors.
2293 
2294  Handler.enterFunction(CurrentFunction);
2295 
2296  BlockInfo.resize(CFGraph->getNumBlockIDs(),
2297  CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2298 
2299  // We need to explore the CFG via a "topological" ordering.
2300  // That way, we will be guaranteed to have information about required
2301  // predecessor locksets when exploring a new block.
2302  const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2303  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2304 
2305  CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()];
2306  CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()];
2307 
2308  // Mark entry block as reachable
2309  Initial.Reachable = true;
2310 
2311  // Compute SSA names for local variables
2312  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2313 
2314  // Fill in source locations for all CFGBlocks.
2315  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2316 
2317  CapExprSet ExclusiveLocksAcquired;
2318  CapExprSet SharedLocksAcquired;
2319  CapExprSet LocksReleased;
2320 
2321  // Add locks from exclusive_locks_required and shared_locks_required
2322  // to initial lockset. Also turn off checking for lock and unlock functions.
2323  // FIXME: is there a more intelligent way to check lock/unlock functions?
2324  if (!SortedGraph->empty() && D->hasAttrs()) {
2325  assert(*SortedGraph->begin() == &CFGraph->getEntry());
2326  FactSet &InitialLockset = Initial.EntrySet;
2327 
2328  CapExprSet ExclusiveLocksToAdd;
2329  CapExprSet SharedLocksToAdd;
2330 
2332  for (const auto *Attr : D->attrs()) {
2333  Loc = Attr->getLocation();
2334  if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2335  getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2336  nullptr, D);
2337  } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2338  // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2339  // We must ignore such methods.
2340  if (A->args_size() == 0)
2341  return;
2342  getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2343  nullptr, D);
2344  getMutexIDs(LocksReleased, A, nullptr, D);
2345  } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2346  if (A->args_size() == 0)
2347  return;
2348  getMutexIDs(A->isShared() ? SharedLocksAcquired
2349  : ExclusiveLocksAcquired,
2350  A, nullptr, D);
2351  } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2352  // Don't try to check trylock functions for now.
2353  return;
2354  } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2355  // Don't try to check trylock functions for now.
2356  return;
2357  } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2358  // Don't try to check trylock functions for now.
2359  return;
2360  }
2361  }
2362 
2363  // FIXME -- Loc can be wrong here.
2364  for (const auto &Mu : ExclusiveLocksToAdd) {
2365  auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc,
2366  FactEntry::Declared);
2367  addLock(InitialLockset, std::move(Entry), true);
2368  }
2369  for (const auto &Mu : SharedLocksToAdd) {
2370  auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc,
2371  FactEntry::Declared);
2372  addLock(InitialLockset, std::move(Entry), true);
2373  }
2374  }
2375 
2376  // Compute the expected exit set.
2377  // By default, we expect all locks held on entry to be held on exit.
2378  FactSet ExpectedFunctionExitSet = Initial.EntrySet;
2379 
2380  // Adjust the expected exit set by adding or removing locks, as declared
2381  // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
2382  // issue the appropriate warning.
2383  // FIXME: the location here is not quite right.
2384  for (const auto &Lock : ExclusiveLocksAcquired)
2385  ExpectedFunctionExitSet.addLock(
2386  FactMan, std::make_unique<LockableFactEntry>(Lock, LK_Exclusive,
2387  D->getLocation()));
2388  for (const auto &Lock : SharedLocksAcquired)
2389  ExpectedFunctionExitSet.addLock(
2390  FactMan,
2391  std::make_unique<LockableFactEntry>(Lock, LK_Shared, D->getLocation()));
2392  for (const auto &Lock : LocksReleased)
2393  ExpectedFunctionExitSet.removeLock(FactMan, Lock);
2394 
2395  for (const auto *CurrBlock : *SortedGraph) {
2396  unsigned CurrBlockID = CurrBlock->getBlockID();
2397  CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2398 
2399  // Use the default initial lockset in case there are no predecessors.
2400  VisitedBlocks.insert(CurrBlock);
2401 
2402  // Iterate through the predecessor blocks and warn if the lockset for all
2403  // predecessors is not the same. We take the entry lockset of the current
2404  // block to be the intersection of all previous locksets.
2405  // FIXME: By keeping the intersection, we may output more errors in future
2406  // for a lock which is not in the intersection, but was in the union. We
2407  // may want to also keep the union in future. As an example, let's say
2408  // the intersection contains Mutex L, and the union contains L and M.
2409  // Later we unlock M. At this point, we would output an error because we
2410  // never locked M; although the real error is probably that we forgot to
2411  // lock M on all code paths. Conversely, let's say that later we lock M.
2412  // In this case, we should compare against the intersection instead of the
2413  // union because the real error is probably that we forgot to unlock M on
2414  // all code paths.
2415  bool LocksetInitialized = false;
2416  for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2417  PE = CurrBlock->pred_end(); PI != PE; ++PI) {
2418  // if *PI -> CurrBlock is a back edge
2419  if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2420  continue;
2421 
2422  unsigned PrevBlockID = (*PI)->getBlockID();
2423  CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2424 
2425  // Ignore edges from blocks that can't return.
2426  if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2427  continue;
2428 
2429  // Okay, we can reach this block from the entry.
2430  CurrBlockInfo->Reachable = true;
2431 
2432  FactSet PrevLockset;
2433  getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2434 
2435  if (!LocksetInitialized) {
2436  CurrBlockInfo->EntrySet = PrevLockset;
2437  LocksetInitialized = true;
2438  } else {
2439  // Surprisingly 'continue' doesn't always produce back edges, because
2440  // the CFG has empty "transition" blocks where they meet with the end
2441  // of the regular loop body. We still want to diagnose them as loop.
2442  intersectAndWarn(
2443  CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc,
2444  isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt())
2447  }
2448  }
2449 
2450  // Skip rest of block if it's not reachable.
2451  if (!CurrBlockInfo->Reachable)
2452  continue;
2453 
2454  BuildLockset LocksetBuilder(this, *CurrBlockInfo, ExpectedFunctionExitSet);
2455 
2456  // Visit all the statements in the basic block.
2457  for (const auto &BI : *CurrBlock) {
2458  switch (BI.getKind()) {
2459  case CFGElement::Statement: {
2460  CFGStmt CS = BI.castAs<CFGStmt>();
2461  LocksetBuilder.Visit(CS.getStmt());
2462  break;
2463  }
2464  // Ignore BaseDtor and MemberDtor for now.
2467  const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2468  if (!DD->hasAttrs())
2469  break;
2470 
2471  LocksetBuilder.handleCall(nullptr, DD,
2472  SxBuilder.createVariable(AD.getVarDecl()),
2473  AD.getTriggerStmt()->getEndLoc());
2474  break;
2475  }
2476 
2478  const CFGCleanupFunction &CF = BI.castAs<CFGCleanupFunction>();
2479  LocksetBuilder.handleCall(/*Exp=*/nullptr, CF.getFunctionDecl(),
2480  SxBuilder.createVariable(CF.getVarDecl()),
2481  CF.getVarDecl()->getLocation());
2482  break;
2483  }
2484 
2486  auto TD = BI.castAs<CFGTemporaryDtor>();
2487 
2488  // Clean up constructed object even if there are no attributes to
2489  // keep the number of objects in limbo as small as possible.
2490  if (auto Object = ConstructedObjects.find(
2491  TD.getBindTemporaryExpr()->getSubExpr());
2492  Object != ConstructedObjects.end()) {
2493  const auto *DD = TD.getDestructorDecl(AC.getASTContext());
2494  if (DD->hasAttrs())
2495  // TODO: the location here isn't quite correct.
2496  LocksetBuilder.handleCall(nullptr, DD, Object->second,
2497  TD.getBindTemporaryExpr()->getEndLoc());
2498  ConstructedObjects.erase(Object);
2499  }
2500  break;
2501  }
2502  default:
2503  break;
2504  }
2505  }
2506  CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2507 
2508  // For every back edge from CurrBlock (the end of the loop) to another block
2509  // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2510  // the one held at the beginning of FirstLoopBlock. We can look up the
2511  // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2512  for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2513  SE = CurrBlock->succ_end(); SI != SE; ++SI) {
2514  // if CurrBlock -> *SI is *not* a back edge
2515  if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2516  continue;
2517 
2518  CFGBlock *FirstLoopBlock = *SI;
2519  CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2520  CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2521  intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc,
2523  }
2524  }
2525 
2526  // Skip the final check if the exit block is unreachable.
2527  if (!Final.Reachable)
2528  return;
2529 
2530  // FIXME: Should we call this function for all blocks which exit the function?
2531  intersectAndWarn(ExpectedFunctionExitSet, Final.ExitSet, Final.ExitLoc,
2533 
2534  Handler.leaveFunction(CurrentFunction);
2535 }
2536 
2537 /// Check a function's CFG for thread-safety violations.
2538 ///
2539 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2540 /// at the end of each block, and issue warnings for thread safety violations.
2541 /// Each block in the CFG is traversed exactly once.
2543  ThreadSafetyHandler &Handler,
2544  BeforeSet **BSet) {
2545  if (!*BSet)
2546  *BSet = new BeforeSet;
2547  ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2548  Analyzer.runAnalysis(AC);
2549 }
2550 
2552 
2553 /// Helper function that returns a LockKind required for the given level
2554 /// of access.
2556  switch (AK) {
2557  case AK_Read :
2558  return LK_Shared;
2559  case AK_Written :
2560  return LK_Exclusive;
2561  }
2562  llvm_unreachable("Unknown AccessKind");
2563 }
StringRef P
This file defines AnalysisDeclContext, a class that manages the analysis context data for context sen...
static char ID
Definition: Arena.cpp:183
Defines enum values for all the target-independent builtin functions.
static void dump(llvm::raw_ostream &OS, StringRef FunctionName, ArrayRef< CounterExpression > Expressions, ArrayRef< CounterMappingRegion > Regions)
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:1125
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the clang::Expr interface and subclasses for C++ expressions.
llvm::DenseSet< const void * > Visited
Definition: HTMLLogger.cpp:146
Forward-declares and imports various common LLVM datatypes that clang wants to use unqualified.
Defines an enumeration for C++ overloaded operators.
SourceLocation Loc
Definition: SemaObjC.cpp:755
Defines the clang::SourceLocation class and associated facilities.
Defines various enumerations that describe declaration and type specifiers.
static void warnInvalidLock(ThreadSafetyHandler &Handler, const Expr *MutexExp, const NamedDecl *D, const Expr *DeclExp, StringRef Kind)
Issue a warning about an invalid lock expression.
static const ValueDecl * getValueDecl(const Expr *Exp)
Gets the value decl pointer from DeclRefExprs or MemberExprs.
static bool getStaticBooleanValue(Expr *E, bool &TCond)
static bool neverReturns(const CFGBlock *B)
static void findBlockLocations(CFG *CFGraph, const PostOrderCFGView *SortedGraph, std::vector< CFGBlockInfo > &BlockInfo)
Find the appropriate source locations to use when producing diagnostics for each block in the CFG.
static const Expr * UnpackConstruction(const Expr *E)
TypePropertyCache< Private > Cache
Definition: Type.cpp:4438
C Language Family Type Representation.
__device__ __2f16 b
AnalysisDeclContext contains the context data for the function, method or block under analysis.
Attr - This represents one attribute.
Definition: Attr.h:46
attr::Kind getKind() const
Definition: Attr.h:92
SourceLocation getLocation() const
Definition: Attr.h:99
A builtin binary operation expression such as "x + y" or "x <= y".
Definition: Expr.h:3892
static bool isAssignmentOp(Opcode Opc)
Definition: Expr.h:4027
Opcode getOpcode() const
Definition: Expr.h:3936
Expr * getRHS() const
Definition: Expr.h:3943
Expr * getLHS() const
Definition: Expr.h:3941
Represents C++ object destructor implicitly generated for automatic object or temporary bound to cons...
Definition: CFG.h:417
const Stmt * getTriggerStmt() const
Definition: CFG.h:427
const VarDecl * getVarDecl() const
Definition: CFG.h:422
Represents a single basic block in a source-level CFG.
Definition: CFG.h:604
pred_iterator pred_end()
Definition: CFG.h:967
succ_iterator succ_end()
Definition: CFG.h:985
bool hasNoReturnElement() const
Definition: CFG.h:1103
CFGElement back() const
Definition: CFG.h:902
Stmt * getTerminatorStmt()
Definition: CFG.h:1081
bool empty() const
Definition: CFG.h:947
succ_iterator succ_begin()
Definition: CFG.h:984
AdjacentBlocks::const_iterator const_pred_iterator
Definition: CFG.h:953
pred_iterator pred_begin()
Definition: CFG.h:966
unsigned getBlockID() const
Definition: CFG.h:1105
Stmt * getTerminatorCondition(bool StripParens=true)
Definition: CFG.cpp:6295
AdjacentBlocks::const_iterator const_succ_iterator
Definition: CFG.h:960
Represents a top-level expression in a basic block.
Definition: CFG.h:55
@ CleanupFunction
Definition: CFG.h:79
@ AutomaticObjectDtor
Definition: CFG.h:72
@ TemporaryDtor
Definition: CFG.h:76
T castAs() const
Convert to the specified CFGElement type, asserting that this CFGElement is of the desired type.
Definition: CFG.h:99
const CXXDestructorDecl * getDestructorDecl(ASTContext &astContext) const
Definition: CFG.cpp:5320
const Stmt * getStmt() const
Definition: CFG.h:138
Represents C++ object destructor implicitly generated at the end of full expression for temporary obj...
Definition: CFG.h:510
Represents a source-level, intra-procedural CFG that represents the control-flow of a Stmt.
Definition: CFG.h:1214
CFGBlock & getExit()
Definition: CFG.h:1324
unsigned getNumBlockIDs() const
Returns the total number of BlockIDs allocated (which start at 0).
Definition: CFG.h:1402
CFGBlock & getEntry()
Definition: CFG.h:1322
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1542
arg_iterator arg_begin()
Definition: ExprCXX.h:1671
Expr * getArg(unsigned Arg)
Return the specified argument.
Definition: ExprCXX.h:1685
arg_iterator arg_end()
Definition: ExprCXX.h:1672
CXXConstructorDecl * getConstructor() const
Get the constructor that this expression will (ultimately) call.
Definition: ExprCXX.h:1605
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2535
bool isCopyConstructor(unsigned &TypeQuals) const
Whether this constructor is a copy constructor (C++ [class.copy]p2, which can be used to copy the cla...
Definition: DeclCXX.cpp:2762
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2060
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2872
arg_iterator arg_begin()
Definition: Expr.h:3116
arg_iterator arg_end()
Definition: Expr.h:3119
FunctionDecl * getDirectCallee()
If the callee is a FunctionDecl, return it. Otherwise return null.
Definition: Expr.h:3042
Decl * getCalleeDecl()
Definition: Expr.h:3036
CastExpr - Base class for type casts, including both implicit casts (ImplicitCastExpr) and explicit c...
Definition: Expr.h:3535
CastKind getCastKind() const
Definition: Expr.h:3579
Expr * getSubExpr()
Definition: Expr.h:3585
ConstStmtVisitor - This class implements a simple visitor for Stmt subclasses.
Definition: StmtVisitor.h:195
DeclStmt - Adaptor class for mixing declarations with statements and expressions.
Definition: Stmt.h:1497
bool hasAttrs() const
Definition: DeclBase.h:524
SourceLocation getLocation() const
Definition: DeclBase.h:445
llvm::iterator_range< specific_attr_iterator< T > > specific_attrs() const
Definition: DeclBase.h:565
bool isDefinedOutsideFunctionOrMethod() const
isDefinedOutsideFunctionOrMethod - This predicate returns true if this scoped decl is defined outside...
Definition: DeclBase.h:939
attr_range attrs() const
Definition: DeclBase.h:541
bool hasAttr() const
Definition: DeclBase.h:583
DeclContext * getDeclContext()
Definition: DeclBase.h:454
This represents one expression.
Definition: Expr.h:110
Expr * IgnoreParenCasts() LLVM_READONLY
Skip past any parentheses and casts which might surround this expression until reaching a fixed point...
Definition: Expr.cpp:3116
Expr * IgnoreImplicit() LLVM_READONLY
Skip past any implicit AST nodes which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3099
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3107
bool isPRValue() const
Definition: Expr.h:278
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:277
QualType getType() const
Definition: Expr.h:142
Represents a function declaration or definition.
Definition: Decl.h:1972
ArrayRef< ParmVarDecl * > parameters() const
Definition: Decl.h:2686
Represents a prvalue temporary that is written into memory so that a reference can bind to it.
Definition: ExprCXX.h:4721
ValueDecl * getExtendingDecl()
Get the declaration which triggered the lifetime-extension of this temporary, if any.
Definition: ExprCXX.h:4771
Expr * getSubExpr() const
Retrieve the temporary-generating subexpression whose value will be materialized into a glvalue.
Definition: ExprCXX.h:4738
This represents a decl that may have a name.
Definition: Decl.h:249
StringRef getName() const
Get the name of identifier for this declaration as a StringRef.
Definition: Decl.h:276
std::string getNameAsString() const
Get a human-readable name for the declaration, even if it is one of the special kinds of names (C++ c...
Definition: Decl.h:292
virtual void printName(raw_ostream &OS, const PrintingPolicy &Policy) const
Pretty-print the unqualified name of this declaration.
Definition: Decl.cpp:1675
Implements a set of CFGBlocks using a BitVector.
A (possibly-)qualified type.
Definition: Type.h:940
bool isConstQualified() const
Determine whether this type is const-qualified.
Definition: Type.h:7444
ReturnStmt - This represents a return, optionally of an expression: return; return 4;.
Definition: Stmt.h:3019
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
Stmt - This represents one statement.
Definition: Stmt.h:84
SourceLocation getEndLoc() const LLVM_READONLY
Definition: Stmt.cpp:350
void dump() const
Dumps the specified AST fragment and all subtrees to llvm::errs().
Definition: ASTDumper.cpp:290
The type-property cache.
Definition: Type.cpp:4392
bool isReferenceType() const
Definition: Type.h:7636
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:705
bool isLValueReferenceType() const
Definition: Type.h:7640
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8160
UnaryOperator - This represents the unary-expression's (except sizeof and alignof),...
Definition: Expr.h:2235
Opcode getOpcode() const
Definition: Expr.h:2275
Expr * getSubExpr() const
Definition: Expr.h:2280
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:707
QualType getType() const
Definition: Decl.h:718
void checkBeforeAfter(const ValueDecl *Vd, const FactSet &FSet, ThreadSafetyAnalyzer &Analyzer, SourceLocation Loc, StringRef CapKind)
Return true if any mutexes in FSet are in the acquired_before set of Vd.
BeforeInfo * insertAttrExprs(const ValueDecl *Vd, ThreadSafetyAnalyzer &Analyzer)
Process acquired_before and acquired_after attributes on Vd.
BeforeInfo * getBeforeInfoForDecl(const ValueDecl *Vd, ThreadSafetyAnalyzer &Analyzer)
const PostOrderCFGView * getSortedGraph() const
bool init(AnalysisDeclContext &AC)
const NamedDecl * getDecl() const
const ValueDecl * valueDecl() const
const til::SExpr * sexpr() const
bool equals(const CapabilityExpr &other) const
Handler class for thread safety warnings.
Definition: ThreadSafety.h:99
virtual void handleInvalidLockExp(SourceLocation Loc)
Warn about lock expressions which fail to resolve to lockable objects.
Definition: ThreadSafety.h:108
virtual void enterFunction(const FunctionDecl *FD)
Called by the analysis when starting analysis of a function.
Definition: ThreadSafety.h:235
virtual void handleIncorrectUnlockKind(StringRef Kind, Name LockName, LockKind Expected, LockKind Received, SourceLocation LocLocked, SourceLocation LocUnlock)
Warn about an unlock function call that attempts to unlock a lock with the incorrect lock kind.
Definition: ThreadSafety.h:131
virtual void leaveFunction(const FunctionDecl *FD)
Called by the analysis when finishing analysis of a function.
Definition: ThreadSafety.h:238
virtual void handleExclusiveAndShared(StringRef Kind, Name LockName, SourceLocation Loc1, SourceLocation Loc2)
Warn when a mutex is held exclusively and shared at the same point.
Definition: ThreadSafety.h:172
virtual void handleMutexNotHeld(StringRef Kind, const NamedDecl *D, ProtectedOperationKind POK, Name LockName, LockKind LK, SourceLocation Loc, Name *PossibleMatch=nullptr)
Warn when a protected operation occurs while the specific mutex protecting the operation is not locke...
Definition: ThreadSafety.h:193
virtual void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName, SourceLocation Loc)
Warn when a function is called while an excluded mutex is locked.
Definition: ThreadSafety.h:223
virtual void handleNoMutexHeld(const NamedDecl *D, ProtectedOperationKind POK, AccessKind AK, SourceLocation Loc)
Warn when a protected operation occurs while no locks are held.
Definition: ThreadSafety.h:181
virtual void handleUnmatchedUnlock(StringRef Kind, Name LockName, SourceLocation Loc, SourceLocation LocPreviousUnlock)
Warn about unlock function calls that do not have a prior matching lock expression.
Definition: ThreadSafety.h:117
virtual void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg, SourceLocation Loc)
Warn when acquiring a lock that the negative capability is not held.
Definition: ThreadSafety.h:205
virtual void handleMutexHeldEndOfScope(StringRef Kind, Name LockName, SourceLocation LocLocked, SourceLocation LocEndOfScope, LockErrorKind LEK)
Warn about situations where a mutex is sometimes held and sometimes not.
Definition: ThreadSafety.h:159
virtual void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation LocLocked, SourceLocation LocDoubleLock)
Warn about lock function calls for locks which are already held.
Definition: ThreadSafety.h:142
A Literal pointer to an object allocated in memory.
Base class for AST nodes in the typed intermediate language.
internal::Matcher< T > traverse(TraversalKind TK, const internal::Matcher< T > &InnerMatcher)
Causes all nested matchers to be matched with the specified traversal kind.
Definition: ASTMatchers.h:817
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:65
@ CF
Indicates that the tracked object is a CF object.
bool Dec(InterpState &S, CodePtr OpPC)
1) Pops a pointer from the stack 2) Load the value from the pointer 3) Writes the value decreased by ...
Definition: Interp.h:619
bool Neg(InterpState &S, CodePtr OpPC)
Definition: Interp.h:490
bool matches(const til::SExpr *E1, const til::SExpr *E2)
std::string toString(const til::SExpr *E)
LockKind getLockKindFromAccessKind(AccessKind AK)
Helper function that returns a LockKind required for the given level of access.
void threadSafetyCleanup(BeforeSet *Cache)
AccessKind
This enum distinguishes between different ways to access (read or write) a variable.
Definition: ThreadSafety.h:75
@ AK_Written
Writing a variable.
Definition: ThreadSafety.h:80
@ AK_Read
Reading a variable.
Definition: ThreadSafety.h:77
LockKind
This enum distinguishes between different kinds of lock actions.
Definition: ThreadSafety.h:62
@ LK_Shared
Shared/reader lock of a mutex.
Definition: ThreadSafety.h:64
@ LK_Exclusive
Exclusive/writer lock of a mutex.
Definition: ThreadSafety.h:67
@ LK_Generic
Can be either Shared or Exclusive.
Definition: ThreadSafety.h:70
void runThreadSafetyAnalysis(AnalysisDeclContext &AC, ThreadSafetyHandler &Handler, BeforeSet **Bset)
Check a function's CFG for thread-safety violations.
ProtectedOperationKind
This enum distinguishes between different kinds of operations that may need to be protected by locks.
Definition: ThreadSafety.h:36
@ POK_PtPassByRef
Passing a pt-guarded variable by reference.
Definition: ThreadSafety.h:50
@ POK_VarDereference
Dereferencing a variable (e.g. p in *p = 5;)
Definition: ThreadSafety.h:38
@ POK_PassByRef
Passing a guarded variable by reference.
Definition: ThreadSafety.h:47
@ POK_ReturnByRef
Returning a guarded variable by reference.
Definition: ThreadSafety.h:53
@ POK_VarAccess
Reading or writing a variable (e.g. x in x = 5;)
Definition: ThreadSafety.h:41
@ POK_FunctionCall
Making a function call (e.g. fool())
Definition: ThreadSafety.h:44
@ POK_PtReturnByRef
Returning a pt-guarded variable by reference.
Definition: ThreadSafety.h:56
The JSON file list parser is used to communicate input to InstallAPI.
OverloadedOperatorKind
Enumeration specifying the different kinds of C++ overloaded operators.
Definition: OperatorKinds.h:21
const FunctionProtoType * T
#define bool
Definition: stdbool.h:24
Iterator for iterating over Stmt * arrays that contain only T *.
Definition: Stmt.h:1316