clang  19.0.0git
JumpDiagnostics.cpp
Go to the documentation of this file.
1 //===--- JumpDiagnostics.cpp - Protected scope jump analysis ------*- C++ -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the JumpScopeChecker class, which is used to diagnose
10 // jumps that enter a protected scope in an invalid way.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/Expr.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/StmtCXX.h"
18 #include "clang/AST/StmtObjC.h"
19 #include "clang/AST/StmtOpenACC.h"
20 #include "clang/AST/StmtOpenMP.h"
23 #include "llvm/ADT/BitVector.h"
24 using namespace clang;
25 
26 namespace {
27 
28 /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps
29 /// into VLA and other protected scopes. For example, this rejects:
30 /// goto L;
31 /// int a[n];
32 /// L:
33 ///
34 /// We also detect jumps out of protected scopes when it's not possible to do
35 /// cleanups properly. Indirect jumps and ASM jumps can't do cleanups because
36 /// the target is unknown. Return statements with \c [[clang::musttail]] cannot
37 /// handle any cleanups due to the nature of a tail call.
38 class JumpScopeChecker {
39  Sema &S;
40 
41  /// Permissive - True when recovering from errors, in which case precautions
42  /// are taken to handle incomplete scope information.
43  const bool Permissive;
44 
45  /// GotoScope - This is a record that we use to keep track of all of the
46  /// scopes that are introduced by VLAs and other things that scope jumps like
47  /// gotos. This scope tree has nothing to do with the source scope tree,
48  /// because you can have multiple VLA scopes per compound statement, and most
49  /// compound statements don't introduce any scopes.
50  struct GotoScope {
51  /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for
52  /// the parent scope is the function body.
53  unsigned ParentScope;
54 
55  /// InDiag - The note to emit if there is a jump into this scope.
56  unsigned InDiag;
57 
58  /// OutDiag - The note to emit if there is an indirect jump out
59  /// of this scope. Direct jumps always clean up their current scope
60  /// in an orderly way.
61  unsigned OutDiag;
62 
63  /// Loc - Location to emit the diagnostic.
65 
66  GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag,
68  : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {}
69  };
70 
72  llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes;
74 
75  SmallVector<Stmt*, 4> IndirectJumps;
76  SmallVector<LabelDecl *, 4> IndirectJumpTargets;
78 
79 public:
80  JumpScopeChecker(Stmt *Body, Sema &S);
81 private:
82  void BuildScopeInformation(Decl *D, unsigned &ParentScope);
83  void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl,
84  unsigned &ParentScope);
85  void BuildScopeInformation(CompoundLiteralExpr *CLE, unsigned &ParentScope);
86  void BuildScopeInformation(Stmt *S, unsigned &origParentScope);
87 
88  void VerifyJumps();
89  void VerifyIndirectJumps();
90  void VerifyMustTailStmts();
91  void NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes);
92  void DiagnoseIndirectOrAsmJump(Stmt *IG, unsigned IGScope, LabelDecl *Target,
93  unsigned TargetScope);
94  void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
95  unsigned JumpDiag, unsigned JumpDiagWarning,
96  unsigned JumpDiagCXX98Compat);
97  void CheckGotoStmt(GotoStmt *GS);
98  const Attr *GetMustTailAttr(AttributedStmt *AS);
99 
100  unsigned GetDeepestCommonScope(unsigned A, unsigned B);
101 };
102 } // end anonymous namespace
103 
104 #define CHECK_PERMISSIVE(x) (assert(Permissive || !(x)), (Permissive && (x)))
105 
106 JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s)
107  : S(s), Permissive(s.hasAnyUnrecoverableErrorsInThisFunction()) {
108  // Add a scope entry for function scope.
109  Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation()));
110 
111  // Build information for the top level compound statement, so that we have a
112  // defined scope record for every "goto" and label.
113  unsigned BodyParentScope = 0;
114  BuildScopeInformation(Body, BodyParentScope);
115 
116  // Check that all jumps we saw are kosher.
117  VerifyJumps();
118  VerifyIndirectJumps();
119  VerifyMustTailStmts();
120 }
121 
122 /// GetDeepestCommonScope - Finds the innermost scope enclosing the
123 /// two scopes.
124 unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) {
125  while (A != B) {
126  // Inner scopes are created after outer scopes and therefore have
127  // higher indices.
128  if (A < B) {
129  assert(Scopes[B].ParentScope < B);
130  B = Scopes[B].ParentScope;
131  } else {
132  assert(Scopes[A].ParentScope < A);
133  A = Scopes[A].ParentScope;
134  }
135  }
136  return A;
137 }
138 
139 typedef std::pair<unsigned,unsigned> ScopePair;
140 
141 /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a
142 /// diagnostic that should be emitted if control goes over it. If not, return 0.
144  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
145  unsigned InDiag = 0;
146  unsigned OutDiag = 0;
147 
148  if (VD->getType()->isVariablyModifiedType())
149  InDiag = diag::note_protected_by_vla;
150 
151  if (VD->hasAttr<BlocksAttr>())
152  return ScopePair(diag::note_protected_by___block,
153  diag::note_exits___block);
154 
155  if (VD->hasAttr<CleanupAttr>())
156  return ScopePair(diag::note_protected_by_cleanup,
157  diag::note_exits_cleanup);
158 
159  if (VD->hasLocalStorage()) {
160  switch (VD->getType().isDestructedType()) {
161  case QualType::DK_objc_strong_lifetime:
162  return ScopePair(diag::note_protected_by_objc_strong_init,
163  diag::note_exits_objc_strong);
164 
165  case QualType::DK_objc_weak_lifetime:
166  return ScopePair(diag::note_protected_by_objc_weak_init,
167  diag::note_exits_objc_weak);
168 
169  case QualType::DK_nontrivial_c_struct:
170  return ScopePair(diag::note_protected_by_non_trivial_c_struct_init,
171  diag::note_exits_dtor);
172 
173  case QualType::DK_cxx_destructor:
174  OutDiag = diag::note_exits_dtor;
175  break;
176 
177  case QualType::DK_none:
178  break;
179  }
180  }
181 
182  const Expr *Init = VD->getInit();
183  if (S.Context.getLangOpts().CPlusPlus && VD->hasLocalStorage() && Init &&
184  !Init->containsErrors()) {
185  // C++11 [stmt.dcl]p3:
186  // A program that jumps from a point where a variable with automatic
187  // storage duration is not in scope to a point where it is in scope
188  // is ill-formed unless the variable has scalar type, class type with
189  // a trivial default constructor and a trivial destructor, a
190  // cv-qualified version of one of these types, or an array of one of
191  // the preceding types and is declared without an initializer.
192 
193  // C++03 [stmt.dcl.p3:
194  // A program that jumps from a point where a local variable
195  // with automatic storage duration is not in scope to a point
196  // where it is in scope is ill-formed unless the variable has
197  // POD type and is declared without an initializer.
198 
199  InDiag = diag::note_protected_by_variable_init;
200 
201  // For a variable of (array of) class type declared without an
202  // initializer, we will have call-style initialization and the initializer
203  // will be the CXXConstructExpr with no intervening nodes.
204  if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
205  const CXXConstructorDecl *Ctor = CCE->getConstructor();
206  if (Ctor->isTrivial() && Ctor->isDefaultConstructor() &&
207  VD->getInitStyle() == VarDecl::CallInit) {
208  if (OutDiag)
209  InDiag = diag::note_protected_by_variable_nontriv_destructor;
210  else if (!Ctor->getParent()->isPOD())
211  InDiag = diag::note_protected_by_variable_non_pod;
212  else
213  InDiag = 0;
214  }
215  }
216  }
217 
218  return ScopePair(InDiag, OutDiag);
219  }
220 
221  if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
222  if (TD->getUnderlyingType()->isVariablyModifiedType())
223  return ScopePair(isa<TypedefDecl>(TD)
224  ? diag::note_protected_by_vla_typedef
225  : diag::note_protected_by_vla_type_alias,
226  0);
227  }
228 
229  return ScopePair(0U, 0U);
230 }
231 
232 /// Build scope information for a declaration that is part of a DeclStmt.
233 void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) {
234  // If this decl causes a new scope, push and switch to it.
235  std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S, D);
236  if (Diags.first || Diags.second) {
237  Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second,
238  D->getLocation()));
239  ParentScope = Scopes.size()-1;
240  }
241 
242  // If the decl has an initializer, walk it with the potentially new
243  // scope we just installed.
244  if (VarDecl *VD = dyn_cast<VarDecl>(D))
245  if (Expr *Init = VD->getInit())
246  BuildScopeInformation(Init, ParentScope);
247 }
248 
249 /// Build scope information for a captured block literal variables.
250 void JumpScopeChecker::BuildScopeInformation(VarDecl *D,
251  const BlockDecl *BDecl,
252  unsigned &ParentScope) {
253  // exclude captured __block variables; there's no destructor
254  // associated with the block literal for them.
255  if (D->hasAttr<BlocksAttr>())
256  return;
257  QualType T = D->getType();
258  QualType::DestructionKind destructKind = T.isDestructedType();
259  if (destructKind != QualType::DK_none) {
260  std::pair<unsigned,unsigned> Diags;
261  switch (destructKind) {
262  case QualType::DK_cxx_destructor:
263  Diags = ScopePair(diag::note_enters_block_captures_cxx_obj,
264  diag::note_exits_block_captures_cxx_obj);
265  break;
266  case QualType::DK_objc_strong_lifetime:
267  Diags = ScopePair(diag::note_enters_block_captures_strong,
268  diag::note_exits_block_captures_strong);
269  break;
270  case QualType::DK_objc_weak_lifetime:
271  Diags = ScopePair(diag::note_enters_block_captures_weak,
272  diag::note_exits_block_captures_weak);
273  break;
274  case QualType::DK_nontrivial_c_struct:
275  Diags = ScopePair(diag::note_enters_block_captures_non_trivial_c_struct,
276  diag::note_exits_block_captures_non_trivial_c_struct);
277  break;
278  case QualType::DK_none:
279  llvm_unreachable("non-lifetime captured variable");
280  }
282  if (Loc.isInvalid())
283  Loc = BDecl->getLocation();
284  Scopes.push_back(GotoScope(ParentScope,
285  Diags.first, Diags.second, Loc));
286  ParentScope = Scopes.size()-1;
287  }
288 }
289 
290 /// Build scope information for compound literals of C struct types that are
291 /// non-trivial to destruct.
292 void JumpScopeChecker::BuildScopeInformation(CompoundLiteralExpr *CLE,
293  unsigned &ParentScope) {
294  unsigned InDiag = diag::note_enters_compound_literal_scope;
295  unsigned OutDiag = diag::note_exits_compound_literal_scope;
296  Scopes.push_back(GotoScope(ParentScope, InDiag, OutDiag, CLE->getExprLoc()));
297  ParentScope = Scopes.size() - 1;
298 }
299 
300 /// BuildScopeInformation - The statements from CI to CE are known to form a
301 /// coherent VLA scope with a specified parent node. Walk through the
302 /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively
303 /// walking the AST as needed.
304 void JumpScopeChecker::BuildScopeInformation(Stmt *S,
305  unsigned &origParentScope) {
306  // If this is a statement, rather than an expression, scopes within it don't
307  // propagate out into the enclosing scope. Otherwise we have to worry
308  // about block literals, which have the lifetime of their enclosing statement.
309  unsigned independentParentScope = origParentScope;
310  unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S))
311  ? origParentScope : independentParentScope);
312 
313  unsigned StmtsToSkip = 0u;
314 
315  // If we found a label, remember that it is in ParentScope scope.
316  switch (S->getStmtClass()) {
317  case Stmt::AddrLabelExprClass:
318  IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel());
319  break;
320 
321  case Stmt::ObjCForCollectionStmtClass: {
322  auto *CS = cast<ObjCForCollectionStmt>(S);
323  unsigned Diag = diag::note_protected_by_objc_fast_enumeration;
324  unsigned NewParentScope = Scopes.size();
325  Scopes.push_back(GotoScope(ParentScope, Diag, 0, S->getBeginLoc()));
326  BuildScopeInformation(CS->getBody(), NewParentScope);
327  return;
328  }
329 
330  case Stmt::IndirectGotoStmtClass:
331  // "goto *&&lbl;" is a special case which we treat as equivalent
332  // to a normal goto. In addition, we don't calculate scope in the
333  // operand (to avoid recording the address-of-label use), which
334  // works only because of the restricted set of expressions which
335  // we detect as constant targets.
336  if (cast<IndirectGotoStmt>(S)->getConstantTarget())
337  goto RecordJumpScope;
338 
339  LabelAndGotoScopes[S] = ParentScope;
340  IndirectJumps.push_back(S);
341  break;
342 
343  case Stmt::SwitchStmtClass:
344  // Evaluate the C++17 init stmt and condition variable
345  // before entering the scope of the switch statement.
346  if (Stmt *Init = cast<SwitchStmt>(S)->getInit()) {
347  BuildScopeInformation(Init, ParentScope);
348  ++StmtsToSkip;
349  }
350  if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) {
351  BuildScopeInformation(Var, ParentScope);
352  ++StmtsToSkip;
353  }
354  goto RecordJumpScope;
355 
356  case Stmt::GCCAsmStmtClass:
357  if (!cast<GCCAsmStmt>(S)->isAsmGoto())
358  break;
359  [[fallthrough]];
360 
361  case Stmt::GotoStmtClass:
362  RecordJumpScope:
363  // Remember both what scope a goto is in as well as the fact that we have
364  // it. This makes the second scan not have to walk the AST again.
365  LabelAndGotoScopes[S] = ParentScope;
366  Jumps.push_back(S);
367  break;
368 
369  case Stmt::IfStmtClass: {
370  IfStmt *IS = cast<IfStmt>(S);
371  if (!(IS->isConstexpr() || IS->isConsteval() ||
373  break;
374 
375  unsigned Diag = diag::note_protected_by_if_available;
376  if (IS->isConstexpr())
377  Diag = diag::note_protected_by_constexpr_if;
378  else if (IS->isConsteval())
379  Diag = diag::note_protected_by_consteval_if;
380 
381  if (VarDecl *Var = IS->getConditionVariable())
382  BuildScopeInformation(Var, ParentScope);
383 
384  // Cannot jump into the middle of the condition.
385  unsigned NewParentScope = Scopes.size();
386  Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc()));
387 
388  if (!IS->isConsteval())
389  BuildScopeInformation(IS->getCond(), NewParentScope);
390 
391  // Jumps into either arm of an 'if constexpr' are not allowed.
392  NewParentScope = Scopes.size();
393  Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc()));
394  BuildScopeInformation(IS->getThen(), NewParentScope);
395  if (Stmt *Else = IS->getElse()) {
396  NewParentScope = Scopes.size();
397  Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc()));
398  BuildScopeInformation(Else, NewParentScope);
399  }
400  return;
401  }
402 
403  case Stmt::CXXTryStmtClass: {
404  CXXTryStmt *TS = cast<CXXTryStmt>(S);
405  {
406  unsigned NewParentScope = Scopes.size();
407  Scopes.push_back(GotoScope(ParentScope,
408  diag::note_protected_by_cxx_try,
409  diag::note_exits_cxx_try,
410  TS->getSourceRange().getBegin()));
411  if (Stmt *TryBlock = TS->getTryBlock())
412  BuildScopeInformation(TryBlock, NewParentScope);
413  }
414 
415  // Jump from the catch into the try is not allowed either.
416  for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) {
417  CXXCatchStmt *CS = TS->getHandler(I);
418  unsigned NewParentScope = Scopes.size();
419  Scopes.push_back(GotoScope(ParentScope,
420  diag::note_protected_by_cxx_catch,
421  diag::note_exits_cxx_catch,
422  CS->getSourceRange().getBegin()));
423  BuildScopeInformation(CS->getHandlerBlock(), NewParentScope);
424  }
425  return;
426  }
427 
428  case Stmt::SEHTryStmtClass: {
429  SEHTryStmt *TS = cast<SEHTryStmt>(S);
430  {
431  unsigned NewParentScope = Scopes.size();
432  Scopes.push_back(GotoScope(ParentScope,
433  diag::note_protected_by_seh_try,
434  diag::note_exits_seh_try,
435  TS->getSourceRange().getBegin()));
436  if (Stmt *TryBlock = TS->getTryBlock())
437  BuildScopeInformation(TryBlock, NewParentScope);
438  }
439 
440  // Jump from __except or __finally into the __try are not allowed either.
441  if (SEHExceptStmt *Except = TS->getExceptHandler()) {
442  unsigned NewParentScope = Scopes.size();
443  Scopes.push_back(GotoScope(ParentScope,
444  diag::note_protected_by_seh_except,
445  diag::note_exits_seh_except,
446  Except->getSourceRange().getBegin()));
447  BuildScopeInformation(Except->getBlock(), NewParentScope);
448  } else if (SEHFinallyStmt *Finally = TS->getFinallyHandler()) {
449  unsigned NewParentScope = Scopes.size();
450  Scopes.push_back(GotoScope(ParentScope,
451  diag::note_protected_by_seh_finally,
452  diag::note_exits_seh_finally,
453  Finally->getSourceRange().getBegin()));
454  BuildScopeInformation(Finally->getBlock(), NewParentScope);
455  }
456 
457  return;
458  }
459 
460  case Stmt::DeclStmtClass: {
461  // If this is a declstmt with a VLA definition, it defines a scope from here
462  // to the end of the containing context.
463  DeclStmt *DS = cast<DeclStmt>(S);
464  // The decl statement creates a scope if any of the decls in it are VLAs
465  // or have the cleanup attribute.
466  for (auto *I : DS->decls())
467  BuildScopeInformation(I, origParentScope);
468  return;
469  }
470 
471  case Stmt::StmtExprClass: {
472  // [GNU]
473  // Jumping into a statement expression with goto or using
474  // a switch statement outside the statement expression with
475  // a case or default label inside the statement expression is not permitted.
476  // Jumping out of a statement expression is permitted.
477  StmtExpr *SE = cast<StmtExpr>(S);
478  unsigned NewParentScope = Scopes.size();
479  Scopes.push_back(GotoScope(ParentScope,
480  diag::note_enters_statement_expression,
481  /*OutDiag=*/0, SE->getBeginLoc()));
482  BuildScopeInformation(SE->getSubStmt(), NewParentScope);
483  return;
484  }
485 
486  case Stmt::ObjCAtTryStmtClass: {
487  // Disallow jumps into any part of an @try statement by pushing a scope and
488  // walking all sub-stmts in that scope.
489  ObjCAtTryStmt *AT = cast<ObjCAtTryStmt>(S);
490  // Recursively walk the AST for the @try part.
491  {
492  unsigned NewParentScope = Scopes.size();
493  Scopes.push_back(GotoScope(ParentScope,
494  diag::note_protected_by_objc_try,
495  diag::note_exits_objc_try,
496  AT->getAtTryLoc()));
497  if (Stmt *TryPart = AT->getTryBody())
498  BuildScopeInformation(TryPart, NewParentScope);
499  }
500 
501  // Jump from the catch to the finally or try is not valid.
502  for (ObjCAtCatchStmt *AC : AT->catch_stmts()) {
503  unsigned NewParentScope = Scopes.size();
504  Scopes.push_back(GotoScope(ParentScope,
505  diag::note_protected_by_objc_catch,
506  diag::note_exits_objc_catch,
507  AC->getAtCatchLoc()));
508  // @catches are nested and it isn't
509  BuildScopeInformation(AC->getCatchBody(), NewParentScope);
510  }
511 
512  // Jump from the finally to the try or catch is not valid.
513  if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) {
514  unsigned NewParentScope = Scopes.size();
515  Scopes.push_back(GotoScope(ParentScope,
516  diag::note_protected_by_objc_finally,
517  diag::note_exits_objc_finally,
518  AF->getAtFinallyLoc()));
519  BuildScopeInformation(AF, NewParentScope);
520  }
521 
522  return;
523  }
524 
525  case Stmt::ObjCAtSynchronizedStmtClass: {
526  // Disallow jumps into the protected statement of an @synchronized, but
527  // allow jumps into the object expression it protects.
528  ObjCAtSynchronizedStmt *AS = cast<ObjCAtSynchronizedStmt>(S);
529  // Recursively walk the AST for the @synchronized object expr, it is
530  // evaluated in the normal scope.
531  BuildScopeInformation(AS->getSynchExpr(), ParentScope);
532 
533  // Recursively walk the AST for the @synchronized part, protected by a new
534  // scope.
535  unsigned NewParentScope = Scopes.size();
536  Scopes.push_back(GotoScope(ParentScope,
537  diag::note_protected_by_objc_synchronized,
538  diag::note_exits_objc_synchronized,
539  AS->getAtSynchronizedLoc()));
540  BuildScopeInformation(AS->getSynchBody(), NewParentScope);
541  return;
542  }
543 
544  case Stmt::ObjCAutoreleasePoolStmtClass: {
545  // Disallow jumps into the protected statement of an @autoreleasepool.
546  ObjCAutoreleasePoolStmt *AS = cast<ObjCAutoreleasePoolStmt>(S);
547  // Recursively walk the AST for the @autoreleasepool part, protected by a
548  // new scope.
549  unsigned NewParentScope = Scopes.size();
550  Scopes.push_back(GotoScope(ParentScope,
551  diag::note_protected_by_objc_autoreleasepool,
552  diag::note_exits_objc_autoreleasepool,
553  AS->getAtLoc()));
554  BuildScopeInformation(AS->getSubStmt(), NewParentScope);
555  return;
556  }
557 
558  case Stmt::ExprWithCleanupsClass: {
559  // Disallow jumps past full-expressions that use blocks with
560  // non-trivial cleanups of their captures. This is theoretically
561  // implementable but a lot of work which we haven't felt up to doing.
562  ExprWithCleanups *EWC = cast<ExprWithCleanups>(S);
563  for (unsigned i = 0, e = EWC->getNumObjects(); i != e; ++i) {
564  if (auto *BDecl = EWC->getObject(i).dyn_cast<BlockDecl *>())
565  for (const auto &CI : BDecl->captures()) {
566  VarDecl *variable = CI.getVariable();
567  BuildScopeInformation(variable, BDecl, origParentScope);
568  }
569  else if (auto *CLE = EWC->getObject(i).dyn_cast<CompoundLiteralExpr *>())
570  BuildScopeInformation(CLE, origParentScope);
571  else
572  llvm_unreachable("unexpected cleanup object type");
573  }
574  break;
575  }
576 
577  case Stmt::MaterializeTemporaryExprClass: {
578  // Disallow jumps out of scopes containing temporaries lifetime-extended to
579  // automatic storage duration.
580  MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(S);
581  if (MTE->getStorageDuration() == SD_Automatic) {
582  const Expr *ExtendedObject =
584  if (ExtendedObject->getType().isDestructedType()) {
585  Scopes.push_back(GotoScope(ParentScope, 0,
586  diag::note_exits_temporary_dtor,
587  ExtendedObject->getExprLoc()));
588  origParentScope = Scopes.size()-1;
589  }
590  }
591  break;
592  }
593 
594  case Stmt::CaseStmtClass:
595  case Stmt::DefaultStmtClass:
596  case Stmt::LabelStmtClass:
597  LabelAndGotoScopes[S] = ParentScope;
598  break;
599 
600  case Stmt::AttributedStmtClass: {
601  AttributedStmt *AS = cast<AttributedStmt>(S);
602  if (GetMustTailAttr(AS)) {
603  LabelAndGotoScopes[AS] = ParentScope;
604  MustTailStmts.push_back(AS);
605  }
606  break;
607  }
608 
609  case Stmt::OpenACCComputeConstructClass: {
610  unsigned NewParentScope = Scopes.size();
611  OpenACCComputeConstruct *CC = cast<OpenACCComputeConstruct>(S);
612  Scopes.push_back(GotoScope(
613  ParentScope, diag::note_acc_branch_into_compute_construct,
614  diag::note_acc_branch_out_of_compute_construct, CC->getBeginLoc()));
615  BuildScopeInformation(CC->getStructuredBlock(), NewParentScope);
616  return;
617  }
618 
619  default:
620  if (auto *ED = dyn_cast<OMPExecutableDirective>(S)) {
621  if (!ED->isStandaloneDirective()) {
622  unsigned NewParentScope = Scopes.size();
623  Scopes.emplace_back(ParentScope,
624  diag::note_omp_protected_structured_block,
625  diag::note_omp_exits_structured_block,
626  ED->getStructuredBlock()->getBeginLoc());
627  BuildScopeInformation(ED->getStructuredBlock(), NewParentScope);
628  return;
629  }
630  }
631  break;
632  }
633 
634  for (Stmt *SubStmt : S->children()) {
635  if (!SubStmt)
636  continue;
637  if (StmtsToSkip) {
638  --StmtsToSkip;
639  continue;
640  }
641 
642  // Cases, labels, and defaults aren't "scope parents". It's also
643  // important to handle these iteratively instead of recursively in
644  // order to avoid blowing out the stack.
645  while (true) {
646  Stmt *Next;
647  if (SwitchCase *SC = dyn_cast<SwitchCase>(SubStmt))
648  Next = SC->getSubStmt();
649  else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt))
650  Next = LS->getSubStmt();
651  else
652  break;
653 
654  LabelAndGotoScopes[SubStmt] = ParentScope;
655  SubStmt = Next;
656  }
657 
658  // Recursively walk the AST.
659  BuildScopeInformation(SubStmt, ParentScope);
660  }
661 }
662 
663 /// VerifyJumps - Verify each element of the Jumps array to see if they are
664 /// valid, emitting diagnostics if not.
665 void JumpScopeChecker::VerifyJumps() {
666  while (!Jumps.empty()) {
667  Stmt *Jump = Jumps.pop_back_val();
668 
669  // With a goto,
670  if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) {
671  // The label may not have a statement if it's coming from inline MS ASM.
672  if (GS->getLabel()->getStmt()) {
673  CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(),
674  diag::err_goto_into_protected_scope,
675  diag::ext_goto_into_protected_scope,
676  diag::warn_cxx98_compat_goto_into_protected_scope);
677  }
678  CheckGotoStmt(GS);
679  continue;
680  }
681 
682  // If an asm goto jumps to a different scope, things like destructors or
683  // initializers might not be run which may be suprising to users. Perhaps
684  // this behavior can be changed in the future, but today Clang will not
685  // generate such code. Produce a diagnostic instead. See also the
686  // discussion here: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110728.
687  if (auto *G = dyn_cast<GCCAsmStmt>(Jump)) {
688  for (AddrLabelExpr *L : G->labels()) {
689  LabelDecl *LD = L->getLabel();
690  unsigned JumpScope = LabelAndGotoScopes[G];
691  unsigned TargetScope = LabelAndGotoScopes[LD->getStmt()];
692  if (JumpScope != TargetScope)
693  DiagnoseIndirectOrAsmJump(G, JumpScope, LD, TargetScope);
694  }
695  continue;
696  }
697 
698  // We only get indirect gotos here when they have a constant target.
699  if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) {
700  LabelDecl *Target = IGS->getConstantTarget();
701  CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(),
702  diag::err_goto_into_protected_scope,
703  diag::ext_goto_into_protected_scope,
704  diag::warn_cxx98_compat_goto_into_protected_scope);
705  continue;
706  }
707 
708  SwitchStmt *SS = cast<SwitchStmt>(Jump);
709  for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
710  SC = SC->getNextSwitchCase()) {
711  if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(SC)))
712  continue;
714  if (CaseStmt *CS = dyn_cast<CaseStmt>(SC))
715  Loc = CS->getBeginLoc();
716  else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC))
717  Loc = DS->getBeginLoc();
718  else
719  Loc = SC->getBeginLoc();
720  CheckJump(SS, SC, Loc, diag::err_switch_into_protected_scope, 0,
721  diag::warn_cxx98_compat_switch_into_protected_scope);
722  }
723  }
724 }
725 
726 /// VerifyIndirectJumps - Verify whether any possible indirect goto jump might
727 /// cross a protection boundary. Unlike direct jumps, indirect goto jumps
728 /// count cleanups as protection boundaries: since there's no way to know where
729 /// the jump is going, we can't implicitly run the right cleanups the way we
730 /// can with direct jumps. Thus, an indirect/asm jump is "trivial" if it
731 /// bypasses no initializations and no teardowns. More formally, an
732 /// indirect/asm jump from A to B is trivial if the path out from A to DCA(A,B)
733 /// is trivial and the path in from DCA(A,B) to B is trivial, where DCA(A,B) is
734 /// the deepest common ancestor of A and B. Jump-triviality is transitive but
735 /// asymmetric.
736 ///
737 /// A path in is trivial if none of the entered scopes have an InDiag.
738 /// A path out is trivial is none of the exited scopes have an OutDiag.
739 ///
740 /// Under these definitions, this function checks that the indirect
741 /// jump between A and B is trivial for every indirect goto statement A
742 /// and every label B whose address was taken in the function.
743 void JumpScopeChecker::VerifyIndirectJumps() {
744  if (IndirectJumps.empty())
745  return;
746  // If there aren't any address-of-label expressions in this function,
747  // complain about the first indirect goto.
748  if (IndirectJumpTargets.empty()) {
749  S.Diag(IndirectJumps[0]->getBeginLoc(),
750  diag::err_indirect_goto_without_addrlabel);
751  return;
752  }
753  // Collect a single representative of every scope containing an indirect
754  // goto. For most code bases, this substantially cuts down on the number of
755  // jump sites we'll have to consider later.
756  using JumpScope = std::pair<unsigned, Stmt *>;
757  SmallVector<JumpScope, 32> JumpScopes;
758  {
759  llvm::DenseMap<unsigned, Stmt*> JumpScopesMap;
760  for (Stmt *IG : IndirectJumps) {
761  if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(IG)))
762  continue;
763  unsigned IGScope = LabelAndGotoScopes[IG];
764  if (!JumpScopesMap.contains(IGScope))
765  JumpScopesMap[IGScope] = IG;
766  }
767  JumpScopes.reserve(JumpScopesMap.size());
768  for (auto &Pair : JumpScopesMap)
769  JumpScopes.emplace_back(Pair);
770  }
771 
772  // Collect a single representative of every scope containing a
773  // label whose address was taken somewhere in the function.
774  // For most code bases, there will be only one such scope.
775  llvm::DenseMap<unsigned, LabelDecl*> TargetScopes;
776  for (LabelDecl *TheLabel : IndirectJumpTargets) {
777  if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(TheLabel->getStmt())))
778  continue;
779  unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()];
780  if (!TargetScopes.contains(LabelScope))
781  TargetScopes[LabelScope] = TheLabel;
782  }
783 
784  // For each target scope, make sure it's trivially reachable from
785  // every scope containing a jump site.
786  //
787  // A path between scopes always consists of exitting zero or more
788  // scopes, then entering zero or more scopes. We build a set of
789  // of scopes S from which the target scope can be trivially
790  // entered, then verify that every jump scope can be trivially
791  // exitted to reach a scope in S.
792  llvm::BitVector Reachable(Scopes.size(), false);
793  for (auto [TargetScope, TargetLabel] : TargetScopes) {
794  Reachable.reset();
795 
796  // Mark all the enclosing scopes from which you can safely jump
797  // into the target scope. 'Min' will end up being the index of
798  // the shallowest such scope.
799  unsigned Min = TargetScope;
800  while (true) {
801  Reachable.set(Min);
802 
803  // Don't go beyond the outermost scope.
804  if (Min == 0) break;
805 
806  // Stop if we can't trivially enter the current scope.
807  if (Scopes[Min].InDiag) break;
808 
809  Min = Scopes[Min].ParentScope;
810  }
811 
812  // Walk through all the jump sites, checking that they can trivially
813  // reach this label scope.
814  for (auto [JumpScope, JumpStmt] : JumpScopes) {
815  unsigned Scope = JumpScope;
816  // Walk out the "scope chain" for this scope, looking for a scope
817  // we've marked reachable. For well-formed code this amortizes
818  // to O(JumpScopes.size() / Scopes.size()): we only iterate
819  // when we see something unmarked, and in well-formed code we
820  // mark everything we iterate past.
821  bool IsReachable = false;
822  while (true) {
823  if (Reachable.test(Scope)) {
824  // If we find something reachable, mark all the scopes we just
825  // walked through as reachable.
826  for (unsigned S = JumpScope; S != Scope; S = Scopes[S].ParentScope)
827  Reachable.set(S);
828  IsReachable = true;
829  break;
830  }
831 
832  // Don't walk out if we've reached the top-level scope or we've
833  // gotten shallower than the shallowest reachable scope.
834  if (Scope == 0 || Scope < Min) break;
835 
836  // Don't walk out through an out-diagnostic.
837  if (Scopes[Scope].OutDiag) break;
838 
839  Scope = Scopes[Scope].ParentScope;
840  }
841 
842  // Only diagnose if we didn't find something.
843  if (IsReachable) continue;
844 
845  DiagnoseIndirectOrAsmJump(JumpStmt, JumpScope, TargetLabel, TargetScope);
846  }
847  }
848 }
849 
850 /// Return true if a particular error+note combination must be downgraded to a
851 /// warning in Microsoft mode.
852 static bool IsMicrosoftJumpWarning(unsigned JumpDiag, unsigned InDiagNote) {
853  return (JumpDiag == diag::err_goto_into_protected_scope &&
854  (InDiagNote == diag::note_protected_by_variable_init ||
855  InDiagNote == diag::note_protected_by_variable_nontriv_destructor));
856 }
857 
858 /// Return true if a particular note should be downgraded to a compatibility
859 /// warning in C++11 mode.
860 static bool IsCXX98CompatWarning(Sema &S, unsigned InDiagNote) {
861  return S.getLangOpts().CPlusPlus11 &&
862  InDiagNote == diag::note_protected_by_variable_non_pod;
863 }
864 
865 /// Produce primary diagnostic for an indirect jump statement.
867  LabelDecl *Target, bool &Diagnosed) {
868  if (Diagnosed)
869  return;
870  bool IsAsmGoto = isa<GCCAsmStmt>(Jump);
871  S.Diag(Jump->getBeginLoc(), diag::err_indirect_goto_in_protected_scope)
872  << IsAsmGoto;
873  S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target)
874  << IsAsmGoto;
875  Diagnosed = true;
876 }
877 
878 /// Produce note diagnostics for a jump into a protected scope.
879 void JumpScopeChecker::NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes) {
880  if (CHECK_PERMISSIVE(ToScopes.empty()))
881  return;
882  for (unsigned I = 0, E = ToScopes.size(); I != E; ++I)
883  if (Scopes[ToScopes[I]].InDiag)
884  S.Diag(Scopes[ToScopes[I]].Loc, Scopes[ToScopes[I]].InDiag);
885 }
886 
887 /// Diagnose an indirect jump which is known to cross scopes.
888 void JumpScopeChecker::DiagnoseIndirectOrAsmJump(Stmt *Jump, unsigned JumpScope,
889  LabelDecl *Target,
890  unsigned TargetScope) {
891  if (CHECK_PERMISSIVE(JumpScope == TargetScope))
892  return;
893 
894  unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope);
895  bool Diagnosed = false;
896 
897  // Walk out the scope chain until we reach the common ancestor.
898  for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope)
899  if (Scopes[I].OutDiag) {
900  DiagnoseIndirectOrAsmJumpStmt(S, Jump, Target, Diagnosed);
901  S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);
902  }
903 
904  SmallVector<unsigned, 10> ToScopesCXX98Compat;
905 
906  // Now walk into the scopes containing the label whose address was taken.
907  for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope)
908  if (IsCXX98CompatWarning(S, Scopes[I].InDiag))
909  ToScopesCXX98Compat.push_back(I);
910  else if (Scopes[I].InDiag) {
911  DiagnoseIndirectOrAsmJumpStmt(S, Jump, Target, Diagnosed);
912  S.Diag(Scopes[I].Loc, Scopes[I].InDiag);
913  }
914 
915  // Diagnose this jump if it would be ill-formed in C++98.
916  if (!Diagnosed && !ToScopesCXX98Compat.empty()) {
917  bool IsAsmGoto = isa<GCCAsmStmt>(Jump);
918  S.Diag(Jump->getBeginLoc(),
919  diag::warn_cxx98_compat_indirect_goto_in_protected_scope)
920  << IsAsmGoto;
921  S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target)
922  << IsAsmGoto;
923  NoteJumpIntoScopes(ToScopesCXX98Compat);
924  }
925 }
926 
927 /// CheckJump - Validate that the specified jump statement is valid: that it is
928 /// jumping within or out of its current scope, not into a deeper one.
929 void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc,
930  unsigned JumpDiagError, unsigned JumpDiagWarning,
931  unsigned JumpDiagCXX98Compat) {
932  if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(From)))
933  return;
934  if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(To)))
935  return;
936 
937  unsigned FromScope = LabelAndGotoScopes[From];
938  unsigned ToScope = LabelAndGotoScopes[To];
939 
940  // Common case: exactly the same scope, which is fine.
941  if (FromScope == ToScope) return;
942 
943  // Warn on gotos out of __finally blocks.
944  if (isa<GotoStmt>(From) || isa<IndirectGotoStmt>(From)) {
945  // If FromScope > ToScope, FromScope is more nested and the jump goes to a
946  // less nested scope. Check if it crosses a __finally along the way.
947  for (unsigned I = FromScope; I > ToScope; I = Scopes[I].ParentScope) {
948  if (Scopes[I].InDiag == diag::note_protected_by_seh_finally) {
949  S.Diag(From->getBeginLoc(), diag::warn_jump_out_of_seh_finally);
950  break;
951  } else if (Scopes[I].InDiag ==
952  diag::note_omp_protected_structured_block) {
953  S.Diag(From->getBeginLoc(), diag::err_goto_into_protected_scope);
954  S.Diag(To->getBeginLoc(), diag::note_omp_exits_structured_block);
955  break;
956  } else if (Scopes[I].InDiag ==
957  diag::note_acc_branch_into_compute_construct) {
958  S.Diag(From->getBeginLoc(), diag::err_goto_into_protected_scope);
959  S.Diag(Scopes[I].Loc, diag::note_acc_branch_out_of_compute_construct);
960  return;
961  }
962  }
963  }
964 
965  unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope);
966 
967  // It's okay to jump out from a nested scope.
968  if (CommonScope == ToScope) return;
969 
970  // Pull out (and reverse) any scopes we might need to diagnose skipping.
971  SmallVector<unsigned, 10> ToScopesCXX98Compat;
972  SmallVector<unsigned, 10> ToScopesError;
973  SmallVector<unsigned, 10> ToScopesWarning;
974  for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) {
975  if (S.getLangOpts().MSVCCompat && JumpDiagWarning != 0 &&
976  IsMicrosoftJumpWarning(JumpDiagError, Scopes[I].InDiag))
977  ToScopesWarning.push_back(I);
978  else if (IsCXX98CompatWarning(S, Scopes[I].InDiag))
979  ToScopesCXX98Compat.push_back(I);
980  else if (Scopes[I].InDiag)
981  ToScopesError.push_back(I);
982  }
983 
984  // Handle warnings.
985  if (!ToScopesWarning.empty()) {
986  S.Diag(DiagLoc, JumpDiagWarning);
987  NoteJumpIntoScopes(ToScopesWarning);
988  assert(isa<LabelStmt>(To));
989  LabelStmt *Label = cast<LabelStmt>(To);
990  Label->setSideEntry(true);
991  }
992 
993  // Handle errors.
994  if (!ToScopesError.empty()) {
995  S.Diag(DiagLoc, JumpDiagError);
996  NoteJumpIntoScopes(ToScopesError);
997  }
998 
999  // Handle -Wc++98-compat warnings if the jump is well-formed.
1000  if (ToScopesError.empty() && !ToScopesCXX98Compat.empty()) {
1001  S.Diag(DiagLoc, JumpDiagCXX98Compat);
1002  NoteJumpIntoScopes(ToScopesCXX98Compat);
1003  }
1004 }
1005 
1006 void JumpScopeChecker::CheckGotoStmt(GotoStmt *GS) {
1007  if (GS->getLabel()->isMSAsmLabel()) {
1008  S.Diag(GS->getGotoLoc(), diag::err_goto_ms_asm_label)
1009  << GS->getLabel()->getIdentifier();
1010  S.Diag(GS->getLabel()->getLocation(), diag::note_goto_ms_asm_label)
1011  << GS->getLabel()->getIdentifier();
1012  }
1013 }
1014 
1015 void JumpScopeChecker::VerifyMustTailStmts() {
1016  for (AttributedStmt *AS : MustTailStmts) {
1017  for (unsigned I = LabelAndGotoScopes[AS]; I; I = Scopes[I].ParentScope) {
1018  if (Scopes[I].OutDiag) {
1019  S.Diag(AS->getBeginLoc(), diag::err_musttail_scope);
1020  S.Diag(Scopes[I].Loc, Scopes[I].OutDiag);
1021  }
1022  }
1023  }
1024 }
1025 
1026 const Attr *JumpScopeChecker::GetMustTailAttr(AttributedStmt *AS) {
1027  ArrayRef<const Attr *> Attrs = AS->getAttrs();
1028  const auto *Iter =
1029  llvm::find_if(Attrs, [](const Attr *A) { return isa<MustTailAttr>(A); });
1030  return Iter != Attrs.end() ? *Iter : nullptr;
1031 }
1032 
1033 void Sema::DiagnoseInvalidJumps(Stmt *Body) {
1034  (void)JumpScopeChecker(Body, *this);
1035 }
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
Defines the clang::Expr interface and subclasses for C++ expressions.
unsigned Iter
Definition: HTMLLogger.cpp:154
std::pair< unsigned, unsigned > ScopePair
static ScopePair GetDiagForGotoScopeDecl(Sema &S, const Decl *D)
GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a diagnostic that should be e...
static bool IsCXX98CompatWarning(Sema &S, unsigned InDiagNote)
Return true if a particular note should be downgraded to a compatibility warning in C++11 mode.
static bool IsMicrosoftJumpWarning(unsigned JumpDiag, unsigned InDiagNote)
Return true if a particular error+note combination must be downgraded to a warning in Microsoft mode.
#define CHECK_PERMISSIVE(x)
static void DiagnoseIndirectOrAsmJumpStmt(Sema &S, Stmt *Jump, LabelDecl *Target, bool &Diagnosed)
Produce primary diagnostic for an indirect jump statement.
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
llvm::MachO::Target Target
Definition: MachO.h:50
SourceLocation Loc
Definition: SemaObjC.cpp:755
Defines the clang::SourceLocation class and associated facilities.
Defines the Objective-C statement AST node classes.
This file defines OpenACC AST classes for statement-level contructs.
This file defines OpenMP AST classes for executable directives and clauses.
std::string Label
__device__ __2f16 float __ockl_bool s
const LangOptions & getLangOpts() const
Definition: ASTContext.h:778
AddrLabelExpr - The GNU address of label extension, representing &&label.
Definition: Expr.h:4390
Attr - This represents one attribute.
Definition: Attr.h:46
Represents an attribute applied to a statement.
Definition: Stmt.h:2080
ArrayRef< const Attr * > getAttrs() const
Definition: Stmt.h:2114
SourceLocation getBeginLoc() const
Definition: Stmt.h:2121
Represents a block literal declaration, which is like an unnamed FunctionDecl.
Definition: Decl.h:4497
ArrayRef< Capture > captures() const
Definition: Decl.h:4624
CXXCatchStmt - This represents a C++ catch block.
Definition: StmtCXX.h:28
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: StmtCXX.h:43
Stmt * getHandlerBlock() const
Definition: StmtCXX.h:51
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1542
Represents a C++ constructor within a class.
Definition: DeclCXX.h:2535
bool isDefaultConstructor() const
Whether this constructor is a default constructor (C++ [class.ctor]p5), which can be used to default-...
Definition: DeclCXX.cpp:2753
const CXXRecordDecl * getParent() const
Return the parent of this method declaration, which is the class in which this method is defined.
Definition: DeclCXX.h:2186
bool isPOD() const
Whether this class is a POD-type (C++ [class]p4)
Definition: DeclCXX.h:1175
CXXTryStmt - A C++ try block, including all handlers.
Definition: StmtCXX.h:69
CompoundStmt * getTryBlock()
Definition: StmtCXX.h:100
CXXCatchStmt * getHandler(unsigned i)
Definition: StmtCXX.h:108
unsigned getNumHandlers() const
Definition: StmtCXX.h:107
CaseStmt - Represent a case statement.
Definition: Stmt.h:1801
CompoundLiteralExpr - [C99 6.5.2.5].
Definition: Expr.h:3465
DeclStmt - Adaptor class for mixing declarations with statements and expressions.
Definition: Stmt.h:1497
decl_range decls()
Definition: Stmt.h:1545
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.h:1523
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
SourceLocation getLocation() const
Definition: DeclBase.h:445
bool hasAttr() const
Definition: DeclBase.h:583
Represents an expression – generally a full-expression – that introduces cleanups to be run at the en...
Definition: ExprCXX.h:3467
CleanupObject getObject(unsigned i) const
Definition: ExprCXX.h:3497
unsigned getNumObjects() const
Definition: ExprCXX.h:3495
This represents one expression.
Definition: Expr.h:110
const Expr * skipRValueSubobjectAdjustments(SmallVectorImpl< const Expr * > &CommaLHS, SmallVectorImpl< SubobjectAdjustment > &Adjustments) const
Walk outwards from an expression we want to bind a reference to and find the expression whose lifetim...
Definition: Expr.cpp:82
SourceLocation getExprLoc() const LLVM_READONLY
getExprLoc - Return the preferred location for the arrow when diagnosing a problem with a generic exp...
Definition: Expr.cpp:277
QualType getType() const
Definition: Expr.h:142
bool isTrivial() const
Whether this function is "trivial" in some specialized C++ senses.
Definition: Decl.h:2342
GotoStmt - This represents a direct goto.
Definition: Stmt.h:2862
LabelDecl * getLabel() const
Definition: Stmt.h:2875
SourceLocation getGotoLoc() const
Definition: Stmt.h:2878
IfStmt - This represents an if/then/else.
Definition: Stmt.h:2138
Expr * getCond()
Definition: Stmt.h:2215
Stmt * getElse()
Definition: Stmt.h:2236
bool isConstexpr() const
Definition: Stmt.h:2331
bool isObjCAvailabilityCheck() const
Definition: Stmt.cpp:1003
Stmt * getThen()
Definition: Stmt.h:2227
SourceLocation getBeginLoc() const
Definition: Stmt.h:2350
bool isConsteval() const
Definition: Stmt.h:2318
VarDecl * getConditionVariable()
Retrieve the variable declared in this "if" statement, if any.
Definition: Stmt.cpp:982
IndirectGotoStmt - This represents an indirect goto.
Definition: Stmt.h:2901
Represents the declaration of a label.
Definition: Decl.h:500
LabelStmt * getStmt() const
Definition: Decl.h:524
bool isMSAsmLabel() const
Definition: Decl.h:534
LabelStmt - Represents a label, which has a substatement.
Definition: Stmt.h:2031
Represents a prvalue temporary that is written into memory so that a reference can bind to it.
Definition: ExprCXX.h:4721
StorageDuration getStorageDuration() const
Retrieve the storage duration for the materialized temporary.
Definition: ExprCXX.h:4746
Expr * getSubExpr() const
Retrieve the temporary-generating subexpression whose value will be materialized into a glvalue.
Definition: ExprCXX.h:4738
IdentifierInfo * getIdentifier() const
Get the identifier that names this declaration, if there is one.
Definition: Decl.h:270
Represents Objective-C's @catch statement.
Definition: StmtObjC.h:77
Represents Objective-C's @finally statement.
Definition: StmtObjC.h:127
Represents Objective-C's @synchronized statement.
Definition: StmtObjC.h:303
const CompoundStmt * getSynchBody() const
Definition: StmtObjC.h:323
const Expr * getSynchExpr() const
Definition: StmtObjC.h:331
SourceLocation getAtSynchronizedLoc() const
Definition: StmtObjC.h:320
Represents Objective-C's @try ... @catch ... @finally statement.
Definition: StmtObjC.h:167
const ObjCAtFinallyStmt * getFinallyStmt() const
Retrieve the @finally statement, if any.
Definition: StmtObjC.h:240
const Stmt * getTryBody() const
Retrieve the @try body.
Definition: StmtObjC.h:213
SourceLocation getAtTryLoc() const
Retrieve the location of the @ in the @try.
Definition: StmtObjC.h:209
catch_range catch_stmts()
Definition: StmtObjC.h:282
Represents Objective-C's @autoreleasepool Statement.
Definition: StmtObjC.h:394
SourceLocation getAtLoc() const
Definition: StmtObjC.h:414
const Stmt * getSubStmt() const
Definition: StmtObjC.h:405
This class represents a compute construct, representing a 'Kind' of ‘parallel’, 'serial',...
Definition: StmtOpenACC.h:124
SourceLocation getBeginLoc() const
Definition: StmtOpenACC.h:60
A (possibly-)qualified type.
Definition: Type.h:940
DestructionKind isDestructedType() const
Returns a nonzero value if objects of this type require non-trivial work to clean up after.
Definition: Type.h:1530
SEHFinallyStmt * getFinallyHandler() const
Definition: Stmt.cpp:1257
CompoundStmt * getTryBlock() const
Definition: Stmt.h:3694
SEHExceptStmt * getExceptHandler() const
Returns 0 if not defined.
Definition: Stmt.cpp:1253
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint=false)
Emit a diagnostic.
Definition: SemaBase.cpp:57
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:462
ASTContext & Context
Definition: Sema.h:857
const LangOptions & getLangOpts() const
Definition: Sema.h:519
Encodes a location in the source.
SourceLocation getBegin() const
StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
Definition: Expr.h:4435
CompoundStmt * getSubStmt()
Definition: Expr.h:4452
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Expr.h:4456
Stmt - This represents one statement.
Definition: Stmt.h:84
SourceRange getSourceRange() const LLVM_READONLY
SourceLocation tokens are not useful in isolation - they are low level value objects created/interpre...
Definition: Stmt.cpp:326
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: Stmt.cpp:338
const SwitchCase * getNextSwitchCase() const
Definition: Stmt.h:1774
SwitchStmt - This represents a 'switch' stmt.
Definition: Stmt.h:2388
SwitchCase * getSwitchCaseList()
Definition: Stmt.h:2525
Base class for declarations which introduce a typedef-name.
Definition: Decl.h:3435
QualType getType() const
Definition: Decl.h:718
Represents a variable declaration or definition.
Definition: Decl.h:919
bool Init(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1472
The JSON file list parser is used to communicate input to InstallAPI.
@ SD_Automatic
Automatic storage duration (most local variables).
Definition: Specifiers.h:326
const FunctionProtoType * T