clang  19.0.0git
CGCleanup.cpp
Go to the documentation of this file.
1 //===--- CGCleanup.cpp - Bookkeeping and code emission for cleanups -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains code dealing with the IR generation for cleanups
10 // and related information.
11 //
12 // A "cleanup" is a piece of code which needs to be executed whenever
13 // control transfers out of a particular scope. This can be
14 // conditionalized to occur only on exceptional control flow, only on
15 // normal control flow, or both.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "llvm/Support/SaveAndRestore.h"
22 
23 using namespace clang;
24 using namespace CodeGen;
25 
27  if (rv.isScalar())
29  if (rv.isAggregate())
31  return true;
32 }
33 
36  if (rv.isScalar()) {
37  llvm::Value *V = rv.getScalarVal();
38  return saved_type(DominatingLLVMValue::save(CGF, V),
39  DominatingLLVMValue::needsSaving(V) ? ScalarAddress
40  : ScalarLiteral);
41  }
42 
43  if (rv.isComplex()) {
45  return saved_type(DominatingLLVMValue::save(CGF, V.first),
46  DominatingLLVMValue::save(CGF, V.second));
47  }
48 
49  assert(rv.isAggregate());
51  return saved_type(
53  DominatingValue<Address>::needsSaving(V) ? AggregateAddress
54  : AggregateLiteral);
55 }
56 
57 /// Given a saved r-value produced by SaveRValue, perform the code
58 /// necessary to restore it to usability at the current insertion
59 /// point.
61  switch (K) {
62  case ScalarLiteral:
63  case ScalarAddress:
64  return RValue::get(DominatingLLVMValue::restore(CGF, Vals.first));
65  case AggregateLiteral:
66  case AggregateAddress:
67  return RValue::getAggregate(
68  DominatingValue<Address>::restore(CGF, AggregateAddr), IsVolatile);
69  case ComplexAddress: {
70  llvm::Value *real = DominatingLLVMValue::restore(CGF, Vals.first);
71  llvm::Value *imag = DominatingLLVMValue::restore(CGF, Vals.second);
72  return RValue::getComplex(real, imag);
73  }
74  }
75 
76  llvm_unreachable("bad saved r-value kind");
77 }
78 
79 /// Push an entry of the given size onto this protected-scope stack.
80 char *EHScopeStack::allocate(size_t Size) {
81  Size = llvm::alignTo(Size, ScopeStackAlignment);
82  if (!StartOfBuffer) {
83  unsigned Capacity = 1024;
84  while (Capacity < Size) Capacity *= 2;
85  StartOfBuffer = new char[Capacity];
86  StartOfData = EndOfBuffer = StartOfBuffer + Capacity;
87  } else if (static_cast<size_t>(StartOfData - StartOfBuffer) < Size) {
88  unsigned CurrentCapacity = EndOfBuffer - StartOfBuffer;
89  unsigned UsedCapacity = CurrentCapacity - (StartOfData - StartOfBuffer);
90 
91  unsigned NewCapacity = CurrentCapacity;
92  do {
93  NewCapacity *= 2;
94  } while (NewCapacity < UsedCapacity + Size);
95 
96  char *NewStartOfBuffer = new char[NewCapacity];
97  char *NewEndOfBuffer = NewStartOfBuffer + NewCapacity;
98  char *NewStartOfData = NewEndOfBuffer - UsedCapacity;
99  memcpy(NewStartOfData, StartOfData, UsedCapacity);
100  delete [] StartOfBuffer;
101  StartOfBuffer = NewStartOfBuffer;
102  EndOfBuffer = NewEndOfBuffer;
103  StartOfData = NewStartOfData;
104  }
105 
106  assert(StartOfBuffer + Size <= StartOfData);
107  StartOfData -= Size;
108  return StartOfData;
109 }
110 
111 void EHScopeStack::deallocate(size_t Size) {
112  StartOfData += llvm::alignTo(Size, ScopeStackAlignment);
113 }
114 
116  EHScopeStack::stable_iterator Old) const {
117  for (EHScopeStack::iterator it = begin(); stabilize(it) != Old; it++) {
118  EHCleanupScope *cleanup = dyn_cast<EHCleanupScope>(&*it);
119  if (!cleanup || !cleanup->isLifetimeMarker())
120  return false;
121  }
122 
123  return true;
124 }
125 
127  for (stable_iterator si = getInnermostEHScope(); si != stable_end(); ) {
128  // Skip lifetime markers.
129  if (auto *cleanup = dyn_cast<EHCleanupScope>(&*find(si)))
130  if (cleanup->isLifetimeMarker()) {
131  si = cleanup->getEnclosingEHScope();
132  continue;
133  }
134  return true;
135  }
136 
137  return false;
138 }
139 
143  si != se; ) {
144  EHCleanupScope &cleanup = cast<EHCleanupScope>(*find(si));
145  if (cleanup.isActive()) return si;
146  si = cleanup.getEnclosingNormalCleanup();
147  }
148  return stable_end();
149 }
150 
151 
152 void *EHScopeStack::pushCleanup(CleanupKind Kind, size_t Size) {
153  char *Buffer = allocate(EHCleanupScope::getSizeForCleanupSize(Size));
154  bool IsNormalCleanup = Kind & NormalCleanup;
155  bool IsEHCleanup = Kind & EHCleanup;
156  bool IsLifetimeMarker = Kind & LifetimeMarker;
157 
158  // Per C++ [except.terminate], it is implementation-defined whether none,
159  // some, or all cleanups are called before std::terminate. Thus, when
160  // terminate is the current EH scope, we may skip adding any EH cleanup
161  // scopes.
162  if (InnermostEHScope != stable_end() &&
163  find(InnermostEHScope)->getKind() == EHScope::Terminate)
164  IsEHCleanup = false;
165 
167  new (Buffer) EHCleanupScope(IsNormalCleanup,
168  IsEHCleanup,
169  Size,
170  BranchFixups.size(),
171  InnermostNormalCleanup,
172  InnermostEHScope);
173  if (IsNormalCleanup)
174  InnermostNormalCleanup = stable_begin();
175  if (IsEHCleanup)
176  InnermostEHScope = stable_begin();
177  if (IsLifetimeMarker)
178  Scope->setLifetimeMarker();
179 
180  // With Windows -EHa, Invoke llvm.seh.scope.begin() for EHCleanup
181  // If exceptions are disabled/ignored and SEH is not in use, then there is no
182  // invoke destination. SEH "works" even if exceptions are off. In practice,
183  // this means that C++ destructors and other EH cleanups don't run, which is
184  // consistent with MSVC's behavior, except in the presence of -EHa.
185  // Check getInvokeDest() to generate llvm.seh.scope.begin() as needed.
186  if (CGF->getLangOpts().EHAsynch && IsEHCleanup && !IsLifetimeMarker &&
187  CGF->getTarget().getCXXABI().isMicrosoft() && CGF->getInvokeDest())
188  CGF->EmitSehCppScopeBegin();
189 
190  return Scope->getCleanupBuffer();
191 }
192 
194  assert(!empty() && "popping exception stack when not empty");
195 
196  assert(isa<EHCleanupScope>(*begin()));
197  EHCleanupScope &Cleanup = cast<EHCleanupScope>(*begin());
198  InnermostNormalCleanup = Cleanup.getEnclosingNormalCleanup();
199  InnermostEHScope = Cleanup.getEnclosingEHScope();
200  deallocate(Cleanup.getAllocatedSize());
201 
202  // Destroy the cleanup.
203  Cleanup.Destroy();
204 
205  // Check whether we can shrink the branch-fixups stack.
206  if (!BranchFixups.empty()) {
207  // If we no longer have any normal cleanups, all the fixups are
208  // complete.
209  if (!hasNormalCleanups())
210  BranchFixups.clear();
211 
212  // Otherwise we can still trim out unnecessary nulls.
213  else
214  popNullFixups();
215  }
216 }
217 
219  assert(getInnermostEHScope() == stable_end());
220  char *buffer = allocate(EHFilterScope::getSizeForNumFilters(numFilters));
221  EHFilterScope *filter = new (buffer) EHFilterScope(numFilters);
222  InnermostEHScope = stable_begin();
223  return filter;
224 }
225 
227  assert(!empty() && "popping exception stack when not empty");
228 
229  EHFilterScope &filter = cast<EHFilterScope>(*begin());
231 
232  InnermostEHScope = filter.getEnclosingEHScope();
233 }
234 
235 EHCatchScope *EHScopeStack::pushCatch(unsigned numHandlers) {
236  char *buffer = allocate(EHCatchScope::getSizeForNumHandlers(numHandlers));
237  EHCatchScope *scope =
238  new (buffer) EHCatchScope(numHandlers, InnermostEHScope);
239  InnermostEHScope = stable_begin();
240  return scope;
241 }
242 
244  char *Buffer = allocate(EHTerminateScope::getSize());
245  new (Buffer) EHTerminateScope(InnermostEHScope);
246  InnermostEHScope = stable_begin();
247 }
248 
249 /// Remove any 'null' fixups on the stack. However, we can't pop more
250 /// fixups than the fixup depth on the innermost normal cleanup, or
251 /// else fixups that we try to add to that cleanup will end up in the
252 /// wrong place. We *could* try to shrink fixup depths, but that's
253 /// actually a lot of work for little benefit.
255  // We expect this to only be called when there's still an innermost
256  // normal cleanup; otherwise there really shouldn't be any fixups.
257  assert(hasNormalCleanups());
258 
259  EHScopeStack::iterator it = find(InnermostNormalCleanup);
260  unsigned MinSize = cast<EHCleanupScope>(*it).getFixupDepth();
261  assert(BranchFixups.size() >= MinSize && "fixup stack out of order");
262 
263  while (BranchFixups.size() > MinSize &&
264  BranchFixups.back().Destination == nullptr)
265  BranchFixups.pop_back();
266 }
267 
269  // Create a variable to decide whether the cleanup needs to be run.
271  Builder.getInt1Ty(), CharUnits::One(), "cleanup.cond");
272 
273  // Initialize it to false at a site that's guaranteed to be run
274  // before each evaluation.
275  setBeforeOutermostConditional(Builder.getFalse(), active, *this);
276 
277  // Initialize it to true at the current location.
278  Builder.CreateStore(Builder.getTrue(), active);
279 
280  return active;
281 }
282 
284  // Set that as the active flag in the cleanup.
285  EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
286  assert(!cleanup.hasActiveFlag() && "cleanup already has active flag?");
287  cleanup.setActiveFlag(ActiveFlag);
288 
289  if (cleanup.isNormalCleanup()) cleanup.setTestFlagInNormalCleanup();
290  if (cleanup.isEHCleanup()) cleanup.setTestFlagInEHCleanup();
291 }
292 
293 void EHScopeStack::Cleanup::anchor() {}
294 
295 static void createStoreInstBefore(llvm::Value *value, Address addr,
296  llvm::Instruction *beforeInst,
297  CodeGenFunction &CGF) {
298  auto store = new llvm::StoreInst(value, addr.emitRawPointer(CGF), beforeInst);
299  store->setAlignment(addr.getAlignment().getAsAlign());
300 }
301 
302 static llvm::LoadInst *createLoadInstBefore(Address addr, const Twine &name,
303  llvm::Instruction *beforeInst,
304  CodeGenFunction &CGF) {
305  return new llvm::LoadInst(addr.getElementType(), addr.emitRawPointer(CGF),
306  name, false, addr.getAlignment().getAsAlign(),
307  beforeInst);
308 }
309 
310 /// All the branch fixups on the EH stack have propagated out past the
311 /// outermost normal cleanup; resolve them all by adding cases to the
312 /// given switch instruction.
314  llvm::SwitchInst *Switch,
315  llvm::BasicBlock *CleanupEntry) {
317 
318  for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
319  // Skip this fixup if its destination isn't set.
320  BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
321  if (Fixup.Destination == nullptr) continue;
322 
323  // If there isn't an OptimisticBranchBlock, then InitialBranch is
324  // still pointing directly to its destination; forward it to the
325  // appropriate cleanup entry. This is required in the specific
326  // case of
327  // { std::string s; goto lbl; }
328  // lbl:
329  // i.e. where there's an unresolved fixup inside a single cleanup
330  // entry which we're currently popping.
331  if (Fixup.OptimisticBranchBlock == nullptr) {
332  createStoreInstBefore(CGF.Builder.getInt32(Fixup.DestinationIndex),
334  CGF);
335  Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
336  }
337 
338  // Don't add this case to the switch statement twice.
339  if (!CasesAdded.insert(Fixup.Destination).second)
340  continue;
341 
342  Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
343  Fixup.Destination);
344  }
345 
346  CGF.EHStack.clearFixups();
347 }
348 
349 /// Transitions the terminator of the given exit-block of a cleanup to
350 /// be a cleanup switch.
351 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
352  llvm::BasicBlock *Block) {
353  // If it's a branch, turn it into a switch whose default
354  // destination is its original target.
355  llvm::Instruction *Term = Block->getTerminator();
356  assert(Term && "can't transition block without terminator");
357 
358  if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
359  assert(Br->isUnconditional());
361  "cleanup.dest", Term, CGF);
362  llvm::SwitchInst *Switch =
363  llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
364  Br->eraseFromParent();
365  return Switch;
366  } else {
367  return cast<llvm::SwitchInst>(Term);
368  }
369 }
370 
371 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
372  assert(Block && "resolving a null target block");
373  if (!EHStack.getNumBranchFixups()) return;
374 
375  assert(EHStack.hasNormalCleanups() &&
376  "branch fixups exist with no normal cleanups on stack");
377 
378  llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
379  bool ResolvedAny = false;
380 
381  for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
382  // Skip this fixup if its destination doesn't match.
383  BranchFixup &Fixup = EHStack.getBranchFixup(I);
384  if (Fixup.Destination != Block) continue;
385 
386  Fixup.Destination = nullptr;
387  ResolvedAny = true;
388 
389  // If it doesn't have an optimistic branch block, LatestBranch is
390  // already pointing to the right place.
391  llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
392  if (!BranchBB)
393  continue;
394 
395  // Don't process the same optimistic branch block twice.
396  if (!ModifiedOptimisticBlocks.insert(BranchBB).second)
397  continue;
398 
399  llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
400 
401  // Add a case to the switch.
402  Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
403  }
404 
405  if (ResolvedAny)
406  EHStack.popNullFixups();
407 }
408 
409 /// Pops cleanup blocks until the given savepoint is reached.
412  std::initializer_list<llvm::Value **> ValuesToReload) {
413  assert(Old.isValid());
414 
415  bool HadBranches = false;
416  while (EHStack.stable_begin() != Old) {
417  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
418  HadBranches |= Scope.hasBranches();
419 
420  // As long as Old strictly encloses the scope's enclosing normal
421  // cleanup, we're going to emit another normal cleanup which
422  // fallthrough can propagate through.
423  bool FallThroughIsBranchThrough =
424  Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
425 
426  PopCleanupBlock(FallThroughIsBranchThrough);
427  }
428 
429  // If we didn't have any branches, the insertion point before cleanups must
430  // dominate the current insertion point and we don't need to reload any
431  // values.
432  if (!HadBranches)
433  return;
434 
435  // Spill and reload all values that the caller wants to be live at the current
436  // insertion point.
437  for (llvm::Value **ReloadedValue : ValuesToReload) {
438  auto *Inst = dyn_cast_or_null<llvm::Instruction>(*ReloadedValue);
439  if (!Inst)
440  continue;
441 
442  // Don't spill static allocas, they dominate all cleanups. These are created
443  // by binding a reference to a local variable or temporary.
444  auto *AI = dyn_cast<llvm::AllocaInst>(Inst);
445  if (AI && AI->isStaticAlloca())
446  continue;
447 
448  Address Tmp =
449  CreateDefaultAlignTempAlloca(Inst->getType(), "tmp.exprcleanup");
450 
451  // Find an insertion point after Inst and spill it to the temporary.
452  llvm::BasicBlock::iterator InsertBefore;
453  if (auto *Invoke = dyn_cast<llvm::InvokeInst>(Inst))
454  InsertBefore = Invoke->getNormalDest()->getFirstInsertionPt();
455  else
456  InsertBefore = std::next(Inst->getIterator());
457  CGBuilderTy(CGM, &*InsertBefore).CreateStore(Inst, Tmp);
458 
459  // Reload the value at the current insertion point.
460  *ReloadedValue = Builder.CreateLoad(Tmp);
461  }
462 }
463 
464 /// Pops cleanup blocks until the given savepoint is reached, then add the
465 /// cleanups from the given savepoint in the lifetime-extended cleanups stack.
467  EHScopeStack::stable_iterator Old, size_t OldLifetimeExtendedSize,
468  std::initializer_list<llvm::Value **> ValuesToReload) {
469  PopCleanupBlocks(Old, ValuesToReload);
470 
471  // Move our deferred cleanups onto the EH stack.
472  for (size_t I = OldLifetimeExtendedSize,
473  E = LifetimeExtendedCleanupStack.size(); I != E; /**/) {
474  // Alignment should be guaranteed by the vptrs in the individual cleanups.
475  assert((I % alignof(LifetimeExtendedCleanupHeader) == 0) &&
476  "misaligned cleanup stack entry");
477 
479  reinterpret_cast<LifetimeExtendedCleanupHeader&>(
480  LifetimeExtendedCleanupStack[I]);
481  I += sizeof(Header);
482 
483  EHStack.pushCopyOfCleanup(Header.getKind(),
484  &LifetimeExtendedCleanupStack[I],
485  Header.getSize());
486  I += Header.getSize();
487 
488  if (Header.isConditional()) {
489  RawAddress ActiveFlag =
490  reinterpret_cast<RawAddress &>(LifetimeExtendedCleanupStack[I]);
491  initFullExprCleanupWithFlag(ActiveFlag);
492  I += sizeof(ActiveFlag);
493  }
494  }
495  LifetimeExtendedCleanupStack.resize(OldLifetimeExtendedSize);
496 }
497 
498 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
500  assert(Scope.isNormalCleanup());
501  llvm::BasicBlock *Entry = Scope.getNormalBlock();
502  if (!Entry) {
503  Entry = CGF.createBasicBlock("cleanup");
504  Scope.setNormalBlock(Entry);
505  }
506  return Entry;
507 }
508 
509 /// Attempts to reduce a cleanup's entry block to a fallthrough. This
510 /// is basically llvm::MergeBlockIntoPredecessor, except
511 /// simplified/optimized for the tighter constraints on cleanup blocks.
512 ///
513 /// Returns the new block, whatever it is.
514 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
515  llvm::BasicBlock *Entry) {
516  llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
517  if (!Pred) return Entry;
518 
519  llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
520  if (!Br || Br->isConditional()) return Entry;
521  assert(Br->getSuccessor(0) == Entry);
522 
523  // If we were previously inserting at the end of the cleanup entry
524  // block, we'll need to continue inserting at the end of the
525  // predecessor.
526  bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
527  assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
528 
529  // Kill the branch.
530  Br->eraseFromParent();
531 
532  // Replace all uses of the entry with the predecessor, in case there
533  // are phis in the cleanup.
534  Entry->replaceAllUsesWith(Pred);
535 
536  // Merge the blocks.
537  Pred->splice(Pred->end(), Entry);
538 
539  // Kill the entry block.
540  Entry->eraseFromParent();
541 
542  if (WasInsertBlock)
543  CGF.Builder.SetInsertPoint(Pred);
544 
545  return Pred;
546 }
547 
548 static void EmitCleanup(CodeGenFunction &CGF,
551  Address ActiveFlag) {
552  // If there's an active flag, load it and skip the cleanup if it's
553  // false.
554  llvm::BasicBlock *ContBB = nullptr;
555  if (ActiveFlag.isValid()) {
556  ContBB = CGF.createBasicBlock("cleanup.done");
557  llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
558  llvm::Value *IsActive
559  = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
560  CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
561  CGF.EmitBlock(CleanupBB);
562  }
563 
564  // Ask the cleanup to emit itself.
565  Fn->Emit(CGF, flags);
566  assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
567 
568  // Emit the continuation block if there was an active flag.
569  if (ActiveFlag.isValid())
570  CGF.EmitBlock(ContBB);
571 }
572 
573 static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
574  llvm::BasicBlock *From,
575  llvm::BasicBlock *To) {
576  // Exit is the exit block of a cleanup, so it always terminates in
577  // an unconditional branch or a switch.
578  llvm::Instruction *Term = Exit->getTerminator();
579 
580  if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
581  assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
582  Br->setSuccessor(0, To);
583  } else {
584  llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
585  for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
586  if (Switch->getSuccessor(I) == From)
587  Switch->setSuccessor(I, To);
588  }
589 }
590 
591 /// We don't need a normal entry block for the given cleanup.
592 /// Optimistic fixup branches can cause these blocks to come into
593 /// existence anyway; if so, destroy it.
594 ///
595 /// The validity of this transformation is very much specific to the
596 /// exact ways in which we form branches to cleanup entries.
598  EHCleanupScope &scope) {
599  llvm::BasicBlock *entry = scope.getNormalBlock();
600  if (!entry) return;
601 
602  // Replace all the uses with unreachable.
603  llvm::BasicBlock *unreachableBB = CGF.getUnreachableBlock();
604  for (llvm::BasicBlock::use_iterator
605  i = entry->use_begin(), e = entry->use_end(); i != e; ) {
606  llvm::Use &use = *i;
607  ++i;
608 
609  use.set(unreachableBB);
610 
611  // The only uses should be fixup switches.
612  llvm::SwitchInst *si = cast<llvm::SwitchInst>(use.getUser());
613  if (si->getNumCases() == 1 && si->getDefaultDest() == unreachableBB) {
614  // Replace the switch with a branch.
615  llvm::BranchInst::Create(si->case_begin()->getCaseSuccessor(), si);
616 
617  // The switch operand is a load from the cleanup-dest alloca.
618  llvm::LoadInst *condition = cast<llvm::LoadInst>(si->getCondition());
619 
620  // Destroy the switch.
621  si->eraseFromParent();
622 
623  // Destroy the load.
624  assert(condition->getOperand(0) == CGF.NormalCleanupDest.getPointer());
625  assert(condition->use_empty());
626  condition->eraseFromParent();
627  }
628  }
629 
630  assert(entry->use_empty());
631  delete entry;
632 }
633 
634 /// Pops a cleanup block. If the block includes a normal cleanup, the
635 /// current insertion point is threaded through the cleanup, as are
636 /// any branch fixups on the cleanup.
637 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough,
638  bool ForDeactivation) {
639  assert(!EHStack.empty() && "cleanup stack is empty!");
640  assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
641  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
642  assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
643 
644  // If we are deactivating a normal cleanup, we need to pretend that the
645  // fallthrough is unreachable. We restore this IP before returning.
646  CGBuilderTy::InsertPoint NormalDeactivateOrigIP;
647  if (ForDeactivation && (Scope.isNormalCleanup() || !getLangOpts().EHAsynch)) {
648  NormalDeactivateOrigIP = Builder.saveAndClearIP();
649  }
650  // Remember activation information.
651  bool IsActive = Scope.isActive();
652  Address NormalActiveFlag =
653  Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag()
654  : Address::invalid();
655  Address EHActiveFlag =
656  Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag()
657  : Address::invalid();
658 
659  // Check whether we need an EH cleanup. This is only true if we've
660  // generated a lazy EH cleanup block.
661  llvm::BasicBlock *EHEntry = Scope.getCachedEHDispatchBlock();
662  assert(Scope.hasEHBranches() == (EHEntry != nullptr));
663  bool RequiresEHCleanup = (EHEntry != nullptr);
664  EHScopeStack::stable_iterator EHParent = Scope.getEnclosingEHScope();
665 
666  // Check the three conditions which might require a normal cleanup:
667 
668  // - whether there are branch fix-ups through this cleanup
669  unsigned FixupDepth = Scope.getFixupDepth();
670  bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
671 
672  // - whether there are branch-throughs or branch-afters
673  bool HasExistingBranches = Scope.hasBranches();
674 
675  // - whether there's a fallthrough
676  llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
677  bool HasFallthrough =
678  FallthroughSource != nullptr && (IsActive || HasExistingBranches);
679 
680  // Branch-through fall-throughs leave the insertion point set to the
681  // end of the last cleanup, which points to the current scope. The
682  // rest of IR gen doesn't need to worry about this; it only happens
683  // during the execution of PopCleanupBlocks().
684  bool HasPrebranchedFallthrough =
685  (FallthroughSource && FallthroughSource->getTerminator());
686 
687  // If this is a normal cleanup, then having a prebranched
688  // fallthrough implies that the fallthrough source unconditionally
689  // jumps here.
690  assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough ||
691  (Scope.getNormalBlock() &&
692  FallthroughSource->getTerminator()->getSuccessor(0)
693  == Scope.getNormalBlock()));
694 
695  bool RequiresNormalCleanup = false;
696  if (Scope.isNormalCleanup() &&
697  (HasFixups || HasExistingBranches || HasFallthrough)) {
698  RequiresNormalCleanup = true;
699  }
700 
701  // If we have a prebranched fallthrough into an inactive normal
702  // cleanup, rewrite it so that it leads to the appropriate place.
703  if (Scope.isNormalCleanup() && HasPrebranchedFallthrough &&
704  !RequiresNormalCleanup) {
705  // FIXME: Come up with a program which would need forwarding prebranched
706  // fallthrough and add tests. Otherwise delete this and assert against it.
707  assert(!IsActive);
708  llvm::BasicBlock *prebranchDest;
709 
710  // If the prebranch is semantically branching through the next
711  // cleanup, just forward it to the next block, leaving the
712  // insertion point in the prebranched block.
713  if (FallthroughIsBranchThrough) {
714  EHScope &enclosing = *EHStack.find(Scope.getEnclosingNormalCleanup());
715  prebranchDest = CreateNormalEntry(*this, cast<EHCleanupScope>(enclosing));
716 
717  // Otherwise, we need to make a new block. If the normal cleanup
718  // isn't being used at all, we could actually reuse the normal
719  // entry block, but this is simpler, and it avoids conflicts with
720  // dead optimistic fixup branches.
721  } else {
722  prebranchDest = createBasicBlock("forwarded-prebranch");
723  EmitBlock(prebranchDest);
724  }
725 
726  llvm::BasicBlock *normalEntry = Scope.getNormalBlock();
727  assert(normalEntry && !normalEntry->use_empty());
728 
729  ForwardPrebranchedFallthrough(FallthroughSource,
730  normalEntry, prebranchDest);
731  }
732 
733  // If we don't need the cleanup at all, we're done.
734  if (!RequiresNormalCleanup && !RequiresEHCleanup) {
736  EHStack.popCleanup(); // safe because there are no fixups
737  assert(EHStack.getNumBranchFixups() == 0 ||
738  EHStack.hasNormalCleanups());
739  if (NormalDeactivateOrigIP.isSet())
740  Builder.restoreIP(NormalDeactivateOrigIP);
741  return;
742  }
743 
744  // Copy the cleanup emission data out. This uses either a stack
745  // array or malloc'd memory, depending on the size, which is
746  // behavior that SmallVector would provide, if we could use it
747  // here. Unfortunately, if you ask for a SmallVector<char>, the
748  // alignment isn't sufficient.
749  auto *CleanupSource = reinterpret_cast<char *>(Scope.getCleanupBuffer());
751  CleanupBufferStack[8 * sizeof(void *)];
752  std::unique_ptr<char[]> CleanupBufferHeap;
753  size_t CleanupSize = Scope.getCleanupSize();
755 
756  if (CleanupSize <= sizeof(CleanupBufferStack)) {
757  memcpy(CleanupBufferStack, CleanupSource, CleanupSize);
758  Fn = reinterpret_cast<EHScopeStack::Cleanup *>(CleanupBufferStack);
759  } else {
760  CleanupBufferHeap.reset(new char[CleanupSize]);
761  memcpy(CleanupBufferHeap.get(), CleanupSource, CleanupSize);
762  Fn = reinterpret_cast<EHScopeStack::Cleanup *>(CleanupBufferHeap.get());
763  }
764 
765  EHScopeStack::Cleanup::Flags cleanupFlags;
766  if (Scope.isNormalCleanup())
767  cleanupFlags.setIsNormalCleanupKind();
768  if (Scope.isEHCleanup())
769  cleanupFlags.setIsEHCleanupKind();
770 
771  // Under -EHa, invoke seh.scope.end() to mark scope end before dtor
772  bool IsEHa = getLangOpts().EHAsynch && !Scope.isLifetimeMarker();
773  const EHPersonality &Personality = EHPersonality::get(*this);
774  if (!RequiresNormalCleanup) {
775  // Mark CPP scope end for passed-by-value Arg temp
776  // per Windows ABI which is "normally" Cleanup in callee
777  if (IsEHa && getInvokeDest()) {
778  // If we are deactivating a normal cleanup then we don't have a
779  // fallthrough. Restore original IP to emit CPP scope ends in the correct
780  // block.
781  if (NormalDeactivateOrigIP.isSet())
782  Builder.restoreIP(NormalDeactivateOrigIP);
783  if (Personality.isMSVCXXPersonality() && Builder.GetInsertBlock())
784  EmitSehCppScopeEnd();
785  if (NormalDeactivateOrigIP.isSet())
786  NormalDeactivateOrigIP = Builder.saveAndClearIP();
787  }
789  Scope.MarkEmitted();
790  EHStack.popCleanup();
791  } else {
792  // If we have a fallthrough and no other need for the cleanup,
793  // emit it directly.
794  if (HasFallthrough && !HasPrebranchedFallthrough && !HasFixups &&
795  !HasExistingBranches) {
796 
797  // mark SEH scope end for fall-through flow
798  if (IsEHa && getInvokeDest()) {
799  if (Personality.isMSVCXXPersonality())
800  EmitSehCppScopeEnd();
801  else
802  EmitSehTryScopeEnd();
803  }
804 
806  Scope.MarkEmitted();
807  EHStack.popCleanup();
808 
809  EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag);
810 
811  // Otherwise, the best approach is to thread everything through
812  // the cleanup block and then try to clean up after ourselves.
813  } else {
814  // Force the entry block to exist.
815  llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
816 
817  // I. Set up the fallthrough edge in.
818 
819  CGBuilderTy::InsertPoint savedInactiveFallthroughIP;
820 
821  // If there's a fallthrough, we need to store the cleanup
822  // destination index. For fall-throughs this is always zero.
823  if (HasFallthrough) {
824  if (!HasPrebranchedFallthrough)
825  Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
826 
827  // Otherwise, save and clear the IP if we don't have fallthrough
828  // because the cleanup is inactive.
829  } else if (FallthroughSource) {
830  assert(!IsActive && "source without fallthrough for active cleanup");
831  savedInactiveFallthroughIP = Builder.saveAndClearIP();
832  }
833 
834  // II. Emit the entry block. This implicitly branches to it if
835  // we have fallthrough. All the fixups and existing branches
836  // should already be branched to it.
837  EmitBlock(NormalEntry);
838 
839  // intercept normal cleanup to mark SEH scope end
840  if (IsEHa && getInvokeDest()) {
841  if (Personality.isMSVCXXPersonality())
842  EmitSehCppScopeEnd();
843  else
844  EmitSehTryScopeEnd();
845  }
846 
847  // III. Figure out where we're going and build the cleanup
848  // epilogue.
849 
850  bool HasEnclosingCleanups =
851  (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
852 
853  // Compute the branch-through dest if we need it:
854  // - if there are branch-throughs threaded through the scope
855  // - if fall-through is a branch-through
856  // - if there are fixups that will be optimistically forwarded
857  // to the enclosing cleanup
858  llvm::BasicBlock *BranchThroughDest = nullptr;
859  if (Scope.hasBranchThroughs() ||
860  (FallthroughSource && FallthroughIsBranchThrough) ||
861  (HasFixups && HasEnclosingCleanups)) {
862  assert(HasEnclosingCleanups);
863  EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
864  BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
865  }
866 
867  llvm::BasicBlock *FallthroughDest = nullptr;
869 
870  // If there's exactly one branch-after and no other threads,
871  // we can route it without a switch.
872  // Skip for SEH, since ExitSwitch is used to generate code to indicate
873  // abnormal termination. (SEH: Except _leave and fall-through at
874  // the end, all other exits in a _try (return/goto/continue/break)
875  // are considered as abnormal terminations, using NormalCleanupDestSlot
876  // to indicate abnormal termination)
877  if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
878  !currentFunctionUsesSEHTry() && Scope.getNumBranchAfters() == 1) {
879  assert(!BranchThroughDest || !IsActive);
880 
881  // Clean up the possibly dead store to the cleanup dest slot.
882  llvm::Instruction *NormalCleanupDestSlot =
883  cast<llvm::Instruction>(getNormalCleanupDestSlot().getPointer());
884  if (NormalCleanupDestSlot->hasOneUse()) {
885  NormalCleanupDestSlot->user_back()->eraseFromParent();
886  NormalCleanupDestSlot->eraseFromParent();
887  NormalCleanupDest = RawAddress::invalid();
888  }
889 
890  llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
891  InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
892 
893  // Build a switch-out if we need it:
894  // - if there are branch-afters threaded through the scope
895  // - if fall-through is a branch-after
896  // - if there are fixups that have nowhere left to go and
897  // so must be immediately resolved
898  } else if (Scope.getNumBranchAfters() ||
899  (HasFallthrough && !FallthroughIsBranchThrough) ||
900  (HasFixups && !HasEnclosingCleanups)) {
901 
902  llvm::BasicBlock *Default =
903  (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
904 
905  // TODO: base this on the number of branch-afters and fixups
906  const unsigned SwitchCapacity = 10;
907 
908  // pass the abnormal exit flag to Fn (SEH cleanup)
909  cleanupFlags.setHasExitSwitch();
910 
911  llvm::LoadInst *Load = createLoadInstBefore(
912  getNormalCleanupDestSlot(), "cleanup.dest", nullptr, *this);
913  llvm::SwitchInst *Switch =
914  llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
915 
916  InstsToAppend.push_back(Load);
917  InstsToAppend.push_back(Switch);
918 
919  // Branch-after fallthrough.
920  if (FallthroughSource && !FallthroughIsBranchThrough) {
921  FallthroughDest = createBasicBlock("cleanup.cont");
922  if (HasFallthrough)
923  Switch->addCase(Builder.getInt32(0), FallthroughDest);
924  }
925 
926  for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
927  Switch->addCase(Scope.getBranchAfterIndex(I),
928  Scope.getBranchAfterBlock(I));
929  }
930 
931  // If there aren't any enclosing cleanups, we can resolve all
932  // the fixups now.
933  if (HasFixups && !HasEnclosingCleanups)
934  ResolveAllBranchFixups(*this, Switch, NormalEntry);
935  } else {
936  // We should always have a branch-through destination in this case.
937  assert(BranchThroughDest);
938  InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
939  }
940 
941  // IV. Pop the cleanup and emit it.
942  Scope.MarkEmitted();
943  EHStack.popCleanup();
944  assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
945 
946  EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag);
947 
948  // Append the prepared cleanup prologue from above.
949  llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
950  for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
951  InstsToAppend[I]->insertInto(NormalExit, NormalExit->end());
952 
953  // Optimistically hope that any fixups will continue falling through.
954  for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
955  I < E; ++I) {
956  BranchFixup &Fixup = EHStack.getBranchFixup(I);
957  if (!Fixup.Destination) continue;
958  if (!Fixup.OptimisticBranchBlock) {
959  createStoreInstBefore(Builder.getInt32(Fixup.DestinationIndex),
960  getNormalCleanupDestSlot(), Fixup.InitialBranch,
961  *this);
962  Fixup.InitialBranch->setSuccessor(0, NormalEntry);
963  }
964  Fixup.OptimisticBranchBlock = NormalExit;
965  }
966 
967  // V. Set up the fallthrough edge out.
968 
969  // Case 1: a fallthrough source exists but doesn't branch to the
970  // cleanup because the cleanup is inactive.
971  if (!HasFallthrough && FallthroughSource) {
972  // Prebranched fallthrough was forwarded earlier.
973  // Non-prebranched fallthrough doesn't need to be forwarded.
974  // Either way, all we need to do is restore the IP we cleared before.
975  assert(!IsActive);
976  Builder.restoreIP(savedInactiveFallthroughIP);
977 
978  // Case 2: a fallthrough source exists and should branch to the
979  // cleanup, but we're not supposed to branch through to the next
980  // cleanup.
981  } else if (HasFallthrough && FallthroughDest) {
982  assert(!FallthroughIsBranchThrough);
983  EmitBlock(FallthroughDest);
984 
985  // Case 3: a fallthrough source exists and should branch to the
986  // cleanup and then through to the next.
987  } else if (HasFallthrough) {
988  // Everything is already set up for this.
989 
990  // Case 4: no fallthrough source exists.
991  } else {
992  Builder.ClearInsertionPoint();
993  }
994 
995  // VI. Assorted cleaning.
996 
997  // Check whether we can merge NormalEntry into a single predecessor.
998  // This might invalidate (non-IR) pointers to NormalEntry.
999  llvm::BasicBlock *NewNormalEntry =
1000  SimplifyCleanupEntry(*this, NormalEntry);
1001 
1002  // If it did invalidate those pointers, and NormalEntry was the same
1003  // as NormalExit, go back and patch up the fixups.
1004  if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1005  for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1006  I < E; ++I)
1007  EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1008  }
1009  }
1010 
1011  if (NormalDeactivateOrigIP.isSet())
1012  Builder.restoreIP(NormalDeactivateOrigIP);
1013  assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1014 
1015  // Emit the EH cleanup if required.
1016  if (RequiresEHCleanup) {
1017  CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1018 
1019  EmitBlock(EHEntry);
1020 
1021  llvm::BasicBlock *NextAction = getEHDispatchBlock(EHParent);
1022 
1023  // Push a terminate scope or cleanupendpad scope around the potentially
1024  // throwing cleanups. For funclet EH personalities, the cleanupendpad models
1025  // program termination when cleanups throw.
1026  bool PushedTerminate = false;
1027  SaveAndRestore RestoreCurrentFuncletPad(CurrentFuncletPad);
1028  llvm::CleanupPadInst *CPI = nullptr;
1029 
1030  const EHPersonality &Personality = EHPersonality::get(*this);
1031  if (Personality.usesFuncletPads()) {
1032  llvm::Value *ParentPad = CurrentFuncletPad;
1033  if (!ParentPad)
1034  ParentPad = llvm::ConstantTokenNone::get(CGM.getLLVMContext());
1035  CurrentFuncletPad = CPI = Builder.CreateCleanupPad(ParentPad);
1036  }
1037 
1038  // Non-MSVC personalities need to terminate when an EH cleanup throws.
1039  if (!Personality.isMSVCPersonality()) {
1040  EHStack.pushTerminate();
1041  PushedTerminate = true;
1042  } else if (IsEHa && getInvokeDest()) {
1043  EmitSehCppScopeEnd();
1044  }
1045 
1046  // We only actually emit the cleanup code if the cleanup is either
1047  // active or was used before it was deactivated.
1048  if (EHActiveFlag.isValid() || IsActive) {
1049  cleanupFlags.setIsForEHCleanup();
1050  EmitCleanup(*this, Fn, cleanupFlags, EHActiveFlag);
1051  }
1052 
1053  if (CPI)
1054  Builder.CreateCleanupRet(CPI, NextAction);
1055  else
1056  Builder.CreateBr(NextAction);
1057 
1058  // Leave the terminate scope.
1059  if (PushedTerminate)
1060  EHStack.popTerminate();
1061 
1062  Builder.restoreIP(SavedIP);
1063 
1064  SimplifyCleanupEntry(*this, EHEntry);
1065  }
1066 }
1067 
1068 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1069 /// specified destination obviously has no cleanups to run. 'false' is always
1070 /// a conservatively correct answer for this method.
1072  assert(Dest.getScopeDepth().encloses(EHStack.stable_begin())
1073  && "stale jump destination");
1074 
1075  // Calculate the innermost active normal cleanup.
1076  EHScopeStack::stable_iterator TopCleanup =
1077  EHStack.getInnermostActiveNormalCleanup();
1078 
1079  // If we're not in an active normal cleanup scope, or if the
1080  // destination scope is within the innermost active normal cleanup
1081  // scope, we don't need to worry about fixups.
1082  if (TopCleanup == EHStack.stable_end() ||
1083  TopCleanup.encloses(Dest.getScopeDepth())) // works for invalid
1084  return true;
1085 
1086  // Otherwise, we might need some cleanups.
1087  return false;
1088 }
1089 
1090 
1091 /// Terminate the current block by emitting a branch which might leave
1092 /// the current cleanup-protected scope. The target scope may not yet
1093 /// be known, in which case this will require a fixup.
1094 ///
1095 /// As a side-effect, this method clears the insertion point.
1097  assert(Dest.getScopeDepth().encloses(EHStack.stable_begin())
1098  && "stale jump destination");
1099 
1100  if (!HaveInsertPoint())
1101  return;
1102 
1103  // Create the branch.
1104  llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1105 
1106  // Calculate the innermost active normal cleanup.
1108  TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1109 
1110  // If we're not in an active normal cleanup scope, or if the
1111  // destination scope is within the innermost active normal cleanup
1112  // scope, we don't need to worry about fixups.
1113  if (TopCleanup == EHStack.stable_end() ||
1114  TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1115  Builder.ClearInsertionPoint();
1116  return;
1117  }
1118 
1119  // If we can't resolve the destination cleanup scope, just add this
1120  // to the current cleanup scope as a branch fixup.
1121  if (!Dest.getScopeDepth().isValid()) {
1122  BranchFixup &Fixup = EHStack.addBranchFixup();
1123  Fixup.Destination = Dest.getBlock();
1124  Fixup.DestinationIndex = Dest.getDestIndex();
1125  Fixup.InitialBranch = BI;
1126  Fixup.OptimisticBranchBlock = nullptr;
1127 
1128  Builder.ClearInsertionPoint();
1129  return;
1130  }
1131 
1132  // Otherwise, thread through all the normal cleanups in scope.
1133 
1134  // Store the index at the start.
1135  llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1136  createStoreInstBefore(Index, getNormalCleanupDestSlot(), BI, *this);
1137 
1138  // Adjust BI to point to the first cleanup block.
1139  {
1141  cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1142  BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1143  }
1144 
1145  // Add this destination to all the scopes involved.
1146  EHScopeStack::stable_iterator I = TopCleanup;
1148  if (E.strictlyEncloses(I)) {
1149  while (true) {
1150  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1151  assert(Scope.isNormalCleanup());
1152  I = Scope.getEnclosingNormalCleanup();
1153 
1154  // If this is the last cleanup we're propagating through, tell it
1155  // that there's a resolved jump moving through it.
1156  if (!E.strictlyEncloses(I)) {
1157  Scope.addBranchAfter(Index, Dest.getBlock());
1158  break;
1159  }
1160 
1161  // Otherwise, tell the scope that there's a jump propagating
1162  // through it. If this isn't new information, all the rest of
1163  // the work has been done before.
1164  if (!Scope.addBranchThrough(Dest.getBlock()))
1165  break;
1166  }
1167  }
1168 
1169  Builder.ClearInsertionPoint();
1170 }
1171 
1172 static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
1174  // If we needed an EH block for any reason, that counts.
1175  if (EHStack.find(cleanup)->hasEHBranches())
1176  return true;
1177 
1178  // Check whether any enclosed cleanups were needed.
1180  i = EHStack.getInnermostEHScope(); i != cleanup; ) {
1181  assert(cleanup.strictlyEncloses(i));
1182 
1183  EHScope &scope = *EHStack.find(i);
1184  if (scope.hasEHBranches())
1185  return true;
1186 
1187  i = scope.getEnclosingEHScope();
1188  }
1189 
1190  return false;
1191 }
1192 
1196 };
1197 
1198 /// The given cleanup block is changing activation state. Configure a
1199 /// cleanup variable if necessary.
1200 ///
1201 /// It would be good if we had some way of determining if there were
1202 /// extra uses *after* the change-over point.
1206  llvm::Instruction *dominatingIP) {
1207  EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));
1208 
1209  // We always need the flag if we're activating the cleanup in a
1210  // conditional context, because we have to assume that the current
1211  // location doesn't necessarily dominate the cleanup's code.
1212  bool isActivatedInConditional =
1214 
1215  bool needFlag = false;
1216 
1217  // Calculate whether the cleanup was used:
1218 
1219  // - as a normal cleanup
1220  if (Scope.isNormalCleanup()) {
1221  Scope.setTestFlagInNormalCleanup();
1222  needFlag = true;
1223  }
1224 
1225  // - as an EH cleanup
1226  if (Scope.isEHCleanup() &&
1227  (isActivatedInConditional || IsUsedAsEHCleanup(CGF.EHStack, C))) {
1228  Scope.setTestFlagInEHCleanup();
1229  needFlag = true;
1230  }
1231 
1232  // If it hasn't yet been used as either, we're done.
1233  if (!needFlag)
1234  return;
1235 
1236  Address var = Scope.getActiveFlag();
1237  if (!var.isValid()) {
1238  CodeGenFunction::AllocaTrackerRAII AllocaTracker(CGF);
1239  var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), CharUnits::One(),
1240  "cleanup.isactive");
1241  Scope.setActiveFlag(var);
1242  Scope.AddAuxAllocas(AllocaTracker.Take());
1243 
1244  assert(dominatingIP && "no existing variable and no dominating IP!");
1245 
1246  // Initialize to true or false depending on whether it was
1247  // active up to this point.
1248  llvm::Constant *value = CGF.Builder.getInt1(kind == ForDeactivation);
1249 
1250  // If we're in a conditional block, ignore the dominating IP and
1251  // use the outermost conditional branch.
1252  if (CGF.isInConditionalBranch()) {
1253  CGF.setBeforeOutermostConditional(value, var, CGF);
1254  } else {
1255  createStoreInstBefore(value, var, dominatingIP, CGF);
1256  }
1257  }
1258 
1259  CGF.Builder.CreateStore(CGF.Builder.getInt1(kind == ForActivation), var);
1260 }
1261 
1262 /// Activate a cleanup that was created in an inactivated state.
1264  llvm::Instruction *dominatingIP) {
1265  assert(C != EHStack.stable_end() && "activating bottom of stack?");
1266  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1267  assert(!Scope.isActive() && "double activation");
1268 
1269  SetupCleanupBlockActivation(*this, C, ForActivation, dominatingIP);
1270 
1271  Scope.setActive(true);
1272 }
1273 
1274 /// Deactive a cleanup that was created in an active state.
1276  llvm::Instruction *dominatingIP) {
1277  assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
1278  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1279  assert(Scope.isActive() && "double deactivation");
1280 
1281  // If it's the top of the stack, just pop it, but do so only if it belongs
1282  // to the current RunCleanupsScope.
1283  if (C == EHStack.stable_begin() &&
1284  CurrentCleanupScopeDepth.strictlyEncloses(C)) {
1285  PopCleanupBlock(/*FallthroughIsBranchThrough=*/false,
1286  /*ForDeactivation=*/true);
1287  return;
1288  }
1289 
1290  // Otherwise, follow the general case.
1291  SetupCleanupBlockActivation(*this, C, ForDeactivation, dominatingIP);
1292 
1293  Scope.setActive(false);
1294 }
1295 
1297  if (!NormalCleanupDest.isValid())
1298  NormalCleanupDest =
1299  CreateDefaultAlignTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1300  return NormalCleanupDest;
1301 }
1302 
1303 /// Emits all the code to cause the given temporary to be cleaned up.
1305  QualType TempType,
1306  Address Ptr) {
1307  pushDestroy(NormalAndEHCleanup, Ptr, TempType, destroyCXXObject,
1308  /*useEHCleanup*/ true);
1309 }
1310 
1311 // Need to set "funclet" in OperandBundle properly for noThrow
1312 // intrinsic (see CGCall.cpp)
1314  llvm::FunctionCallee &SehCppScope) {
1315  llvm::BasicBlock *InvokeDest = CGF.getInvokeDest();
1316  assert(CGF.Builder.GetInsertBlock() && InvokeDest);
1317  llvm::BasicBlock *Cont = CGF.createBasicBlock("invoke.cont");
1319  CGF.getBundlesForFunclet(SehCppScope.getCallee());
1320  if (CGF.CurrentFuncletPad)
1321  BundleList.emplace_back("funclet", CGF.CurrentFuncletPad);
1322  CGF.Builder.CreateInvoke(SehCppScope, Cont, InvokeDest, std::nullopt,
1323  BundleList);
1324  CGF.EmitBlock(Cont);
1325 }
1326 
1327 // Invoke a llvm.seh.scope.begin at the beginning of a CPP scope for -EHa
1329  assert(getLangOpts().EHAsynch);
1330  llvm::FunctionType *FTy =
1331  llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
1332  llvm::FunctionCallee SehCppScope =
1333  CGM.CreateRuntimeFunction(FTy, "llvm.seh.scope.begin");
1334  EmitSehScope(*this, SehCppScope);
1335 }
1336 
1337 // Invoke a llvm.seh.scope.end at the end of a CPP scope for -EHa
1338 // llvm.seh.scope.end is emitted before popCleanup, so it's "invoked"
1340  assert(getLangOpts().EHAsynch);
1341  llvm::FunctionType *FTy =
1342  llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
1343  llvm::FunctionCallee SehCppScope =
1344  CGM.CreateRuntimeFunction(FTy, "llvm.seh.scope.end");
1345  EmitSehScope(*this, SehCppScope);
1346 }
1347 
1348 // Invoke a llvm.seh.try.begin at the beginning of a SEH scope for -EHa
1350  assert(getLangOpts().EHAsynch);
1351  llvm::FunctionType *FTy =
1352  llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
1353  llvm::FunctionCallee SehCppScope =
1354  CGM.CreateRuntimeFunction(FTy, "llvm.seh.try.begin");
1355  EmitSehScope(*this, SehCppScope);
1356 }
1357 
1358 // Invoke a llvm.seh.try.end at the end of a SEH scope for -EHa
1360  assert(getLangOpts().EHAsynch);
1361  llvm::FunctionType *FTy =
1362  llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
1363  llvm::FunctionCallee SehCppScope =
1364  CGM.CreateRuntimeFunction(FTy, "llvm.seh.try.end");
1365  EmitSehScope(*this, SehCppScope);
1366 }
#define V(N, I)
Definition: ASTContext.h:3299
static void EmitSehScope(CodeGenFunction &CGF, llvm::FunctionCallee &SehCppScope)
Definition: CGCleanup.cpp:1313
ForActivation_t
Definition: CGCleanup.cpp:1193
@ ForActivation
Definition: CGCleanup.cpp:1194
@ ForDeactivation
Definition: CGCleanup.cpp:1195
static void EmitCleanup(CodeGenFunction &CGF, EHScopeStack::Cleanup *Fn, EHScopeStack::Cleanup::Flags flags, Address ActiveFlag)
Definition: CGCleanup.cpp:548
static llvm::SwitchInst * TransitionToCleanupSwitch(CodeGenFunction &CGF, llvm::BasicBlock *Block)
Transitions the terminator of the given exit-block of a cleanup to be a cleanup switch.
Definition: CGCleanup.cpp:351
static void destroyOptimisticNormalEntry(CodeGenFunction &CGF, EHCleanupScope &scope)
We don't need a normal entry block for the given cleanup.
Definition: CGCleanup.cpp:597
static void SetupCleanupBlockActivation(CodeGenFunction &CGF, EHScopeStack::stable_iterator C, ForActivation_t kind, llvm::Instruction *dominatingIP)
The given cleanup block is changing activation state.
Definition: CGCleanup.cpp:1203
static llvm::BasicBlock * CreateNormalEntry(CodeGenFunction &CGF, EHCleanupScope &Scope)
Definition: CGCleanup.cpp:498
static llvm::BasicBlock * SimplifyCleanupEntry(CodeGenFunction &CGF, llvm::BasicBlock *Entry)
Attempts to reduce a cleanup's entry block to a fallthrough.
Definition: CGCleanup.cpp:514
static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit, llvm::BasicBlock *From, llvm::BasicBlock *To)
Definition: CGCleanup.cpp:573
static void createStoreInstBefore(llvm::Value *value, Address addr, llvm::Instruction *beforeInst, CodeGenFunction &CGF)
Definition: CGCleanup.cpp:295
static llvm::LoadInst * createLoadInstBefore(Address addr, const Twine &name, llvm::Instruction *beforeInst, CodeGenFunction &CGF)
Definition: CGCleanup.cpp:302
static void ResolveAllBranchFixups(CodeGenFunction &CGF, llvm::SwitchInst *Switch, llvm::BasicBlock *CleanupEntry)
All the branch fixups on the EH stack have propagated out past the outermost normal cleanup; resolve ...
Definition: CGCleanup.cpp:313
static bool IsUsedAsEHCleanup(EHScopeStack &EHStack, EHScopeStack::stable_iterator cleanup)
Definition: CGCleanup.cpp:1172
static Decl::Kind getKind(const Decl *D)
Definition: DeclBase.cpp:1125
const CFGBlock * Block
Definition: HTMLLogger.cpp:153
__DEVICE__ void * memcpy(void *__a, const void *__b, size_t __c)
CFGTerminator getTerminator() const
Definition: CFG.h:1079
Represents a C++ temporary.
Definition: ExprCXX.h:1453
llvm::Align getAsAlign() const
getAsAlign - Returns Quantity as a valid llvm::Align, Beware llvm::Align assumes power of two 8-bit b...
Definition: CharUnits.h:189
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
Like RawAddress, an abstract representation of an aligned address, but the pointer contained in this ...
Definition: Address.h:111
static Address invalid()
Definition: Address.h:153
llvm::Value * emitRawPointer(CodeGenFunction &CGF) const
Return the pointer contained in this class after authenticating it and adding offset to it if necessa...
Definition: Address.h:220
CharUnits getAlignment() const
Definition: Address.h:166
llvm::Type * getElementType() const
Return the type of the values stored in this address.
Definition: Address.h:184
bool isValid() const
Definition: Address.h:154
llvm::StoreInst * CreateStore(llvm::Value *Val, Address Addr, bool IsVolatile=false)
Definition: CGBuilder.h:136
llvm::LoadInst * CreateLoad(Address Addr, const llvm::Twine &Name="")
Definition: CGBuilder.h:108
CodeGenFunction - This class organizes the per-function state that is used while generating LLVM code...
void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *DominatingIP)
ActivateCleanupBlock - Activates an initially-inactive cleanup.
Definition: CGCleanup.cpp:1263
llvm::BasicBlock * createBasicBlock(const Twine &name="", llvm::Function *parent=nullptr, llvm::BasicBlock *before=nullptr)
createBasicBlock - Create an LLVM basic block.
llvm::BasicBlock * getUnreachableBlock()
void EmitBranchThroughCleanup(JumpDest Dest)
EmitBranchThroughCleanup - Emit a branch from the current insert block through the normal cleanup han...
Definition: CGCleanup.cpp:1096
void initFullExprCleanupWithFlag(RawAddress ActiveFlag)
Definition: CGCleanup.cpp:283
bool isInConditionalBranch() const
isInConditionalBranch - Return true if we're currently emitting one branch or the other of a conditio...
void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, std::initializer_list< llvm::Value ** > ValuesToReload={})
Takes the old cleanup stack size and emits the cleanup blocks that have been added.
Definition: CGCleanup.cpp:410
void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *DominatingIP)
DeactivateCleanupBlock - Deactivates the given cleanup block.
Definition: CGCleanup.cpp:1275
void ResolveBranchFixups(llvm::BasicBlock *Target)
Definition: CGCleanup.cpp:371
bool HaveInsertPoint() const
HaveInsertPoint - True if an insertion point is defined.
llvm::AllocaInst * CreateTempAlloca(llvm::Type *Ty, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates an alloca and inserts it into the entry block if ArraySize is nullptr...
Definition: CGExpr.cpp:116
const TargetInfo & getTarget() const
void setBeforeOutermostConditional(llvm::Value *value, Address addr, CodeGenFunction &CGF)
SmallVector< llvm::OperandBundleDef, 1 > getBundlesForFunclet(llvm::Value *Callee)
Definition: CGCall.cpp:4886
RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, const Twine &Name="tmp", llvm::Value *ArraySize=nullptr)
CreateTempAlloca - This creates a alloca and inserts it into the entry block.
Definition: CGExpr.cpp:75
llvm::BasicBlock * getInvokeDest()
void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, Address Ptr)
Emits all the code to cause the given temporary to be cleaned up.
Definition: CGCleanup.cpp:1304
RawAddress NormalCleanupDest
i32s containing the indexes of the cleanup destinations.
std::pair< llvm::Value *, llvm::Value * > ComplexPairTy
llvm::Instruction * CurrentFuncletPad
bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const
isObviouslyBranchWithoutCleanups - Return true if a branch to the specified destination obviously has...
Definition: CGCleanup.cpp:1071
void PopCleanupBlock(bool FallThroughIsBranchThrough=false, bool ForDeactivation=false)
PopCleanupBlock - Will pop the cleanup entry on the stack and process all branch fixups.
Definition: CGCleanup.cpp:637
void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false)
EmitBlock - Emit the given block.
Definition: CGStmt.cpp:578
const LangOptions & getLangOpts() const
A scope which attempts to handle some, possibly all, types of exceptions.
Definition: CGCleanup.h:158
static size_t getSizeForNumHandlers(unsigned N)
Definition: CGCleanup.h:188
A cleanup scope which generates the cleanup blocks lazily.
Definition: CGCleanup.h:243
llvm::BasicBlock * getNormalBlock() const
Definition: CGCleanup.h:376
static size_t getSizeForCleanupSize(size_t Size)
Gets the size required for a lazy cleanup scope with the given cleanup-data requirements.
Definition: CGCleanup.h:335
An exceptions scope which filters exceptions thrown through it.
Definition: CGCleanup.h:501
static size_t getSizeForNumFilters(unsigned numFilters)
Definition: CGCleanup.h:520
unsigned getNumFilters() const
Definition: CGCleanup.h:524
Information for lazily generating a cleanup.
Definition: EHScopeStack.h:141
virtual void Emit(CodeGenFunction &CGF, Flags flags)=0
Emit the cleanup.
A non-stable pointer into the scope stack.
Definition: CGCleanup.h:555
A saved depth on the scope stack.
Definition: EHScopeStack.h:101
bool encloses(stable_iterator I) const
Returns true if this scope encloses I.
Definition: EHScopeStack.h:118
bool strictlyEncloses(stable_iterator I) const
Returns true if this scope strictly encloses I: that is, if it encloses I and is not I.
Definition: EHScopeStack.h:124
A stack of scopes which respond to exceptions, including cleanups and catch blocks.
Definition: EHScopeStack.h:94
class EHFilterScope * pushFilter(unsigned NumFilters)
Push an exceptions filter on the stack.
Definition: CGCleanup.cpp:218
stable_iterator getInnermostNormalCleanup() const
Returns the innermost normal cleanup on the stack, or stable_end() if there are no normal cleanups.
Definition: EHScopeStack.h:370
stable_iterator stable_begin() const
Create a stable reference to the top of the EH stack.
Definition: EHScopeStack.h:393
unsigned getNumBranchFixups() const
Definition: EHScopeStack.h:416
void popCleanup()
Pops a cleanup scope off the stack. This is private to CGCleanup.cpp.
Definition: CGCleanup.cpp:193
stable_iterator getInnermostEHScope() const
Definition: EHScopeStack.h:375
bool containsOnlyLifetimeMarkers(stable_iterator Old) const
Definition: CGCleanup.cpp:115
bool empty() const
Determines whether the exception-scopes stack is empty.
Definition: EHScopeStack.h:359
void popFilter()
Pops an exceptions filter off the stack.
Definition: CGCleanup.cpp:226
BranchFixup & getBranchFixup(unsigned I)
Definition: EHScopeStack.h:417
iterator begin() const
Returns an iterator pointing to the innermost EH scope.
Definition: CGCleanup.h:615
class EHCatchScope * pushCatch(unsigned NumHandlers)
Push a set of catch handlers on the stack.
Definition: CGCleanup.cpp:235
iterator find(stable_iterator save) const
Turn a stable reference to a scope depth into a unstable pointer to the EH stack.
Definition: CGCleanup.h:639
void popNullFixups()
Pops lazily-removed fixups from the end of the list.
Definition: CGCleanup.cpp:254
bool hasNormalCleanups() const
Determines whether there are any normal cleanups on the stack.
Definition: EHScopeStack.h:364
stable_iterator getInnermostActiveNormalCleanup() const
Definition: CGCleanup.cpp:141
stable_iterator stabilize(iterator it) const
Translates an iterator into a stable_iterator.
Definition: CGCleanup.h:646
static stable_iterator stable_end()
Create a stable reference to the bottom of the EH stack.
Definition: EHScopeStack.h:398
void clearFixups()
Clears the branch-fixups list.
Definition: EHScopeStack.h:429
void pushTerminate()
Push a terminate handler on the stack.
Definition: CGCleanup.cpp:243
A protected scope for zero-cost EH handling.
Definition: CGCleanup.h:45
EHScopeStack::stable_iterator getEnclosingEHScope() const
Definition: CGCleanup.h:148
bool hasEHBranches() const
Definition: CGCleanup.h:142
An exceptions scope which calls std::terminate if any exception reaches it.
Definition: CGCleanup.h:543
RValue - This trivial value class is used to represent the result of an expression that is evaluated.
Definition: CGValue.h:41
bool isScalar() const
Definition: CGValue.h:63
static RValue get(llvm::Value *V)
Definition: CGValue.h:97
std::pair< llvm::Value *, llvm::Value * > getComplexVal() const
getComplexVal - Return the real/imag components of this complex value.
Definition: CGValue.h:77
llvm::Value * getScalarVal() const
getScalarVal() - Return the Value* of this scalar value.
Definition: CGValue.h:70
static RValue getAggregate(Address addr, bool isVolatile=false)
Convert an Address to an RValue.
Definition: CGValue.h:124
static RValue getComplex(llvm::Value *V1, llvm::Value *V2)
Definition: CGValue.h:107
bool isAggregate() const
Definition: CGValue.h:65
Address getAggregateAddress() const
getAggregateAddr() - Return the Value* of the address of the aggregate.
Definition: CGValue.h:82
bool isComplex() const
Definition: CGValue.h:64
bool isVolatileQualified() const
Definition: CGValue.h:67
An abstract representation of an aligned address.
Definition: Address.h:41
llvm::Value * getPointer() const
Definition: Address.h:65
static RawAddress invalid()
Definition: Address.h:60
A (possibly-)qualified type.
Definition: Type.h:940
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
bool isMicrosoft() const
Is this ABI an MSVC-compatible ABI?
Definition: TargetCXXABI.h:136
TargetCXXABI getCXXABI() const
Get the C++ ABI currently in use.
Definition: TargetInfo.h:1327
@ NormalCleanup
Denotes a cleanup that should run when a scope is exited using normal control flow (falling off the e...
Definition: EHScopeStack.h:84
@ EHCleanup
Denotes a cleanup that should run when a scope is exited using exceptional control flow (a throw stat...
Definition: EHScopeStack.h:80
constexpr Variable var(Literal L)
Returns the variable of L.
Definition: CNFFormula.h:64
unsigned kind
All of the diagnostics that can be emitted by the frontend.
Definition: DiagnosticIDs.h:65
tooling::Replacements cleanup(const FormatStyle &Style, StringRef Code, ArrayRef< tooling::Range > Ranges, StringRef FileName="<stdin>")
Clean up any erroneous/redundant code in the given Ranges in Code.
Definition: Format.cpp:3799
bool Load(InterpState &S, CodePtr OpPC)
Definition: Interp.h:1396
RangeSelector name(std::string ID)
Given a node with a "name", (like NamedDecl, DeclRefExpr, CxxCtorInitializer, and TypeLoc) selects th...
The JSON file list parser is used to communicate input to InstallAPI.
unsigned DestinationIndex
The destination index value.
Definition: EHScopeStack.h:49
llvm::BasicBlock * Destination
The ultimate destination of the branch.
Definition: EHScopeStack.h:46
llvm::BasicBlock * OptimisticBranchBlock
The block containing the terminator which needs to be modified into a switch if this fixup is resolve...
Definition: EHScopeStack.h:40
llvm::BranchInst * InitialBranch
The initial branch of the fixup.
Definition: EHScopeStack.h:52
llvm::SmallVector< llvm::AllocaInst * > Take()
A jump destination is an abstract label, branching to which may require a jump out through normal cle...
EHScopeStack::stable_iterator getScopeDepth() const
Header for data within LifetimeExtendedCleanupStack.
static llvm::Value * restore(CodeGenFunction &CGF, saved_type value)
static saved_type save(CodeGenFunction &CGF, llvm::Value *value)
static bool needsSaving(llvm::Value *value)
Answer whether the given value needs extra work to be saved.
A metaprogramming class for ensuring that a value will dominate an arbitrary position in a function.
Definition: EHScopeStack.h:65
The exceptions personality for a function.
Definition: CGCleanup.h:652
bool isMSVCXXPersonality() const
Definition: CGCleanup.h:695
static const EHPersonality & get(CodeGenModule &CGM, const FunctionDecl *FD)
bool usesFuncletPads() const
Does this personality use landingpads or the family of pad instructions designed to form funclets?
Definition: CGCleanup.h:684
bool isMSVCPersonality() const
Definition: CGCleanup.h:688
static bool needsSaving(type value)
Definition: EHScopeStack.h:58