Quick Example on Intel CPU and GPU
Installation
If you are using a machine using more than one kind of processor or core and includes an the Intel GPU, please refer to Intel XPU Software Installation
Otherwise, please refer to Intel CPU Software Installation
Code
Use TensorFlow to compute graph: Conv -> ReLU activation -> Bias
quick_example.py
import numpy as np
import sys
import tensorflow as tf
# Conv + ReLU activation + Bias
N = 1
num_channel = 3
input_width, input_height = (5, 5)
filter_width, filter_height = (2, 2)
x = np.random.rand(N, input_width, input_height, num_channel).astype(np.float32)
weight = np.random.rand(filter_width, filter_height, num_channel, num_channel).astype(np.float32)
bias = np.random.rand(num_channel).astype(np.float32)
conv = tf.nn.conv2d(x, weight, strides=[1, 1, 1, 1], padding='SAME')
activation = tf.nn.relu(conv)
result = tf.nn.bias_add(activation, bias)
print(result)
print('Finished')
Execute the Code
python quick_example.py
Example Output
With successful execution, it will print out the following results:
...
tf.Tensor(
[[[[3.479142 2.7296917 4.6456823 ]
[4.077278 3.9259825 5.3000765 ]
[3.3999124 3.0527704 4.0656753 ]
[2.85485 2.7297122 3.9373732 ]
[2.4818356 2.1455178 2.4929404 ]]
[[3.6422923 2.718459 4.7090344 ]
[3.988714 3.3391027 4.875052 ]
[3.6461415 2.9349675 4.327398 ]
[3.298973 2.3905785 4.1704025 ]
[1.9154005 1.6926193 1.9677248 ]]
[[3.481086 2.9746864 3.8941312 ]
[3.3221133 2.5479512 4.197306 ]
[3.305706 2.9873173 4.5597944 ]
[3.250221 3.118212 3.8672705 ]
[1.949225 1.2636094 1.5300783 ]]
[[3.1403804 2.1729176 3.6628485 ]
[3.2607155 2.6342418 3.9381838 ]
[2.6761076 2.5063303 3.4718971 ]
[2.8880196 2.1658201 3.3787665 ]
[2.1193419 1.42261 2.318963 ]]
[[1.8809638 1.6514435 2.3549364 ]
[1.8598063 1.517385 1.9702091 ]
[1.9260886 1.3804817 2.381424 ]
[1.6027272 1.7787259 1.9631021 ]
[0.93901324 1.2134862 0.89942324]]]], shape=(1, 5, 5, 3), dtype=float32)
Finished
Notes
In this example, it is not necessary to import intel_extension_for_tensorflow, and no need to call any of its APIs.
If installed as theintel-extension-for-tensorflow[cpu]
, then the script will choose CPU as the backend and be executed on the CPU automatically; while if installed asintel-extension-for-tensorflow[xpu]
, then the default backend will be GPU and the script will be executed on the GPU.