clDNN
Collaboration diagram for Primitives:

Classes

struct  cldnn::activation
 Activation using rectified linear unit or parameterized rectified linear unit. More...
 
struct  cldnn::batch_norm
 Batch normalization primitive. More...
 
struct  cldnn::concatenation
 
struct  cldnn::convolution
 Performs forward spatial convolution with weight sharing. Also supports built-in Relu cldnn_activation_desc available by setting it in arguments. More...
 
struct  cldnn::crop
 Performs crop operation on input. More...
 
struct  cldnn::custom_gpu_primitive
 This primitive executes a custom kernel provided by the application. More...
 
struct  cldnn::data
 Provides input data to topology. More...
 
struct  cldnn::deconvolution
 Performs transposed convolution. Also supports built-in Relu activation available by setting it in arguments. More...
 
struct  cldnn::detection_output
 Generates a list of detections based on location and confidence predictions by doing non maximum suppression. More...
 
struct  cldnn::eltwise
 Performs elementwise operations (sum, subtract, max or product) on two input primitives Also supports built-in Relu activation available by setting it in arguments. . More...
 
struct  cldnn::fully_connected
 Performs forward fully connected layer (inner product). Also supports built-in Relu cldnn_activation_desc available by setting it in arguments. . More...
 
struct  cldnn::input_layout
 Provides input layout for a data to be passed later to network. More...
 
struct  cldnn::lrn
 Local response normalization. More...
 
struct  cldnn::normalize
 Normalizes the input using an L2 norm and multiplies the output with scale value. The scale can be equal for all channels or one scale per channel. More...
 
struct  cldnn::permute
 Permutes data in the memory, with respect to provided order. More...
 
struct  cldnn::pooling
 Performs "pooling" operation which is a form of non-linear down-sampling. More...
 
struct  cldnn::prior_box
 Generates a set of default bounding boxes with different sizes and aspect ratios. More...
 
struct  cldnn::proposal
 
struct  cldnn::region_yolo
 Normalizes results so they sum to 1. More...
 
struct  cldnn::reorder
 Changes how data is ordered in memory. Value type is not changed & all information is preserved. More...
 
struct  cldnn::reorg_yolo
 Normalizes results so they sum to 1. More...
 
struct  cldnn::reshape
 Changes information about inputs's layout effectively creating new memory which share underlaying buffer but is interpreted in a different way (different shape). More...
 
struct  cldnn::roi_pooling
 
struct  cldnn::scale
 Performs elementwise product of input and scale_input. More...
 
struct  cldnn::softmax
 Normalizes results so they sum to 1. More...
 
struct  cldnn::split
 Performs split operation on input. More...
 
struct  cldnn::upsampling
 Performs nearest neighbor/bilinear upsampling Also supports built-in Relu activation available by setting it in arguments. More...
 

Enumerations

enum  cldnn::prior_box_code_type : int32_t { corner = cldnn_code_type_corner, center_size = cldnn_code_type_center_size, corner_size = cldnn_code_type_corner_size }
 Select method for coding the prior-boxes in the detection output layer.
 
enum  cldnn::eltwise_mode : int32_t { cldnn::eltwise_mode::sum = cldnn_eltwise_sum, cldnn::eltwise_mode::sub = cldnn_eltwise_sub, cldnn::eltwise_mode::max = cldnn_eltwise_max, cldnn::eltwise_mode::prod = cldnn_eltwise_prod }
 Select mode for the eltwise layer. More...
 
enum  cldnn::pooling_mode : int32_t { cldnn::pooling_mode::max = cldnn_pooling_max, cldnn::pooling_mode::average = cldnn_pooling_average, cldnn::pooling_mode::average_no_padding = cldnn_pooling_average_no_padding }
 Select method for the pooling layer. More...
 
enum  cldnn::upsampling_sample_type : int32_t { cldnn::upsampling_sample_type::nearest = cldnn_upsampling_nearest, cldnn::upsampling_sample_type::bilinear = cldnn_upsampling_bilinear }
 Sample mode for the upsampling layer. More...
 

Detailed Description

Enumeration Type Documentation

◆ eltwise_mode

enum cldnn::eltwise_mode : int32_t
strong

Select mode for the eltwise layer.

Enumerator
sum 

Eltwise sum.

sub 

Eltwise subtract.

max 

Eltwise max.

prod 

Eltwise product (Hamarad).

Definition at line 32 of file eltwise.hpp.

◆ pooling_mode

enum cldnn::pooling_mode : int32_t
strong

Select method for the pooling layer.

Enumerator
max 

Maximum-pooling method.

average 

Average-pooling method - values.

average_no_padding 

Average-pooling method without values which are outside of the input.

Definition at line 32 of file pooling.hpp.

◆ upsampling_sample_type

enum cldnn::upsampling_sample_type : int32_t
strong

Sample mode for the upsampling layer.

Enumerator
nearest 

upsampling nearest neighbor.

bilinear 

upsampling bilinear.

Definition at line 32 of file upsampling.hpp.