clang  19.0.0git
SwiftCallingConv.cpp
Go to the documentation of this file.
1 //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the abstract lowering for the Swift calling convention.
10 //
11 //===----------------------------------------------------------------------===//
12 
14 #include "ABIInfo.h"
15 #include "CodeGenModule.h"
16 #include "TargetInfo.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include <optional>
19 
20 using namespace clang;
21 using namespace CodeGen;
22 using namespace swiftcall;
23 
26 }
27 
28 static bool isPowerOf2(unsigned n) {
29  return n == (n & -n);
30 }
31 
32 /// Given two types with the same size, try to find a common type.
33 static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
34  assert(first != second);
35 
36  // Allow pointers to merge with integers, but prefer the integer type.
37  if (first->isIntegerTy()) {
38  if (second->isPointerTy()) return first;
39  } else if (first->isPointerTy()) {
40  if (second->isIntegerTy()) return second;
41  if (second->isPointerTy()) return first;
42 
43  // Allow two vectors to be merged (given that they have the same size).
44  // This assumes that we never have two different vector register sets.
45  } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
46  if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
47  if (auto commonTy = getCommonType(firstVecTy->getElementType(),
48  secondVecTy->getElementType())) {
49  return (commonTy == firstVecTy->getElementType() ? first : second);
50  }
51  }
52  }
53 
54  return nullptr;
55 }
56 
57 static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
58  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
59 }
60 
61 static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
62  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
63 }
64 
66  // Deal with various aggregate types as special cases:
67 
68  // Record types.
69  if (auto recType = type->getAs<RecordType>()) {
70  addTypedData(recType->getDecl(), begin);
71 
72  // Array types.
73  } else if (type->isArrayType()) {
74  // Incomplete array types (flexible array members?) don't provide
75  // data to lay out, and the other cases shouldn't be possible.
77  if (!arrayType) return;
78 
79  QualType eltType = arrayType->getElementType();
80  auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
81  for (uint64_t i = 0, e = arrayType->getZExtSize(); i != e; ++i) {
82  addTypedData(eltType, begin + i * eltSize);
83  }
84 
85  // Complex types.
86  } else if (auto complexType = type->getAs<ComplexType>()) {
87  auto eltType = complexType->getElementType();
88  auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
89  auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
90  addTypedData(eltLLVMType, begin, begin + eltSize);
91  addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
92 
93  // Member pointer types.
94  } else if (type->getAs<MemberPointerType>()) {
95  // Just add it all as opaque.
96  addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
97 
98  // Atomic types.
99  } else if (const auto *atomicType = type->getAs<AtomicType>()) {
100  auto valueType = atomicType->getValueType();
101  auto atomicSize = CGM.getContext().getTypeSizeInChars(atomicType);
102  auto valueSize = CGM.getContext().getTypeSizeInChars(valueType);
103 
104  addTypedData(atomicType->getValueType(), begin);
105 
106  // Add atomic padding.
107  auto atomicPadding = atomicSize - valueSize;
108  if (atomicPadding > CharUnits::Zero())
109  addOpaqueData(begin + valueSize, begin + atomicSize);
110 
111  // Everything else is scalar and should not convert as an LLVM aggregate.
112  } else {
113  // We intentionally convert as !ForMem because we want to preserve
114  // that a type was an i1.
115  auto *llvmType = CGM.getTypes().ConvertType(type);
116  addTypedData(llvmType, begin);
117  }
118 }
119 
121  addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
122 }
123 
125  const ASTRecordLayout &layout) {
126  // Unions are a special case.
127  if (record->isUnion()) {
128  for (auto *field : record->fields()) {
129  if (field->isBitField()) {
130  addBitFieldData(field, begin, 0);
131  } else {
132  addTypedData(field->getType(), begin);
133  }
134  }
135  return;
136  }
137 
138  // Note that correctness does not rely on us adding things in
139  // their actual order of layout; it's just somewhat more efficient
140  // for the builder.
141 
142  // With that in mind, add "early" C++ data.
143  auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
144  if (cxxRecord) {
145  // - a v-table pointer, if the class adds its own
146  if (layout.hasOwnVFPtr()) {
147  addTypedData(CGM.Int8PtrTy, begin);
148  }
149 
150  // - non-virtual bases
151  for (auto &baseSpecifier : cxxRecord->bases()) {
152  if (baseSpecifier.isVirtual()) continue;
153 
154  auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
155  addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
156  }
157 
158  // - a vbptr if the class adds its own
159  if (layout.hasOwnVBPtr()) {
160  addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
161  }
162  }
163 
164  // Add fields.
165  for (auto *field : record->fields()) {
166  auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
167  if (field->isBitField()) {
168  addBitFieldData(field, begin, fieldOffsetInBits);
169  } else {
170  addTypedData(field->getType(),
171  begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
172  }
173  }
174 
175  // Add "late" C++ data:
176  if (cxxRecord) {
177  // - virtual bases
178  for (auto &vbaseSpecifier : cxxRecord->vbases()) {
179  auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
180  addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
181  }
182  }
183 }
184 
185 void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
186  CharUnits recordBegin,
187  uint64_t bitfieldBitBegin) {
188  assert(bitfield->isBitField());
189  auto &ctx = CGM.getContext();
190  auto width = bitfield->getBitWidthValue(ctx);
191 
192  // We can ignore zero-width bit-fields.
193  if (width == 0) return;
194 
195  // toCharUnitsFromBits rounds down.
196  CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
197 
198  // Find the offset of the last byte that is partially occupied by the
199  // bit-field; since we otherwise expect exclusive ends, the end is the
200  // next byte.
201  uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
202  CharUnits bitfieldByteEnd =
203  ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
204  addOpaqueData(recordBegin + bitfieldByteBegin,
205  recordBegin + bitfieldByteEnd);
206 }
207 
209  assert(type && "didn't provide type for typed data");
210  addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
211 }
212 
214  CharUnits begin, CharUnits end) {
215  assert(type && "didn't provide type for typed data");
216  assert(getTypeStoreSize(CGM, type) == end - begin);
217 
218  // Legalize vector types.
219  if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
220  SmallVector<llvm::Type*, 4> componentTys;
221  legalizeVectorType(CGM, end - begin, vecTy, componentTys);
222  assert(componentTys.size() >= 1);
223 
224  // Walk the initial components.
225  for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
226  llvm::Type *componentTy = componentTys[i];
227  auto componentSize = getTypeStoreSize(CGM, componentTy);
228  assert(componentSize < end - begin);
229  addLegalTypedData(componentTy, begin, begin + componentSize);
230  begin += componentSize;
231  }
232 
233  return addLegalTypedData(componentTys.back(), begin, end);
234  }
235 
236  // Legalize integer types.
237  if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
238  if (!isLegalIntegerType(CGM, intTy))
239  return addOpaqueData(begin, end);
240  }
241 
242  // All other types should be legal.
243  return addLegalTypedData(type, begin, end);
244 }
245 
246 void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
247  CharUnits begin, CharUnits end) {
248  // Require the type to be naturally aligned.
249  if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
250 
251  // Try splitting vector types.
252  if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
253  auto split = splitLegalVectorType(CGM, end - begin, vecTy);
254  auto eltTy = split.first;
255  auto numElts = split.second;
256 
257  auto eltSize = (end - begin) / numElts;
258  assert(eltSize == getTypeStoreSize(CGM, eltTy));
259  for (size_t i = 0, e = numElts; i != e; ++i) {
260  addLegalTypedData(eltTy, begin, begin + eltSize);
261  begin += eltSize;
262  }
263  assert(begin == end);
264  return;
265  }
266 
267  return addOpaqueData(begin, end);
268  }
269 
270  addEntry(type, begin, end);
271 }
272 
273 void SwiftAggLowering::addEntry(llvm::Type *type,
274  CharUnits begin, CharUnits end) {
275  assert((!type ||
276  (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
277  "cannot add aggregate-typed data");
278  assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
279 
280  // Fast path: we can just add entries to the end.
281  if (Entries.empty() || Entries.back().End <= begin) {
282  Entries.push_back({begin, end, type});
283  return;
284  }
285 
286  // Find the first existing entry that ends after the start of the new data.
287  // TODO: do a binary search if Entries is big enough for it to matter.
288  size_t index = Entries.size() - 1;
289  while (index != 0) {
290  if (Entries[index - 1].End <= begin) break;
291  --index;
292  }
293 
294  // The entry ends after the start of the new data.
295  // If the entry starts after the end of the new data, there's no conflict.
296  if (Entries[index].Begin >= end) {
297  // This insertion is potentially O(n), but the way we generally build
298  // these layouts makes that unlikely to matter: we'd need a union of
299  // several very large types.
300  Entries.insert(Entries.begin() + index, {begin, end, type});
301  return;
302  }
303 
304  // Otherwise, the ranges overlap. The new range might also overlap
305  // with later ranges.
306 restartAfterSplit:
307 
308  // Simplest case: an exact overlap.
309  if (Entries[index].Begin == begin && Entries[index].End == end) {
310  // If the types match exactly, great.
311  if (Entries[index].Type == type) return;
312 
313  // If either type is opaque, make the entry opaque and return.
314  if (Entries[index].Type == nullptr) {
315  return;
316  } else if (type == nullptr) {
317  Entries[index].Type = nullptr;
318  return;
319  }
320 
321  // If they disagree in an ABI-agnostic way, just resolve the conflict
322  // arbitrarily.
323  if (auto entryType = getCommonType(Entries[index].Type, type)) {
324  Entries[index].Type = entryType;
325  return;
326  }
327 
328  // Otherwise, make the entry opaque.
329  Entries[index].Type = nullptr;
330  return;
331  }
332 
333  // Okay, we have an overlapping conflict of some sort.
334 
335  // If we have a vector type, split it.
336  if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
337  auto eltTy = vecTy->getElementType();
338  CharUnits eltSize =
339  (end - begin) / cast<llvm::FixedVectorType>(vecTy)->getNumElements();
340  assert(eltSize == getTypeStoreSize(CGM, eltTy));
341  for (unsigned i = 0,
342  e = cast<llvm::FixedVectorType>(vecTy)->getNumElements();
343  i != e; ++i) {
344  addEntry(eltTy, begin, begin + eltSize);
345  begin += eltSize;
346  }
347  assert(begin == end);
348  return;
349  }
350 
351  // If the entry is a vector type, split it and try again.
352  if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
353  splitVectorEntry(index);
354  goto restartAfterSplit;
355  }
356 
357  // Okay, we have no choice but to make the existing entry opaque.
358 
359  Entries[index].Type = nullptr;
360 
361  // Stretch the start of the entry to the beginning of the range.
362  if (begin < Entries[index].Begin) {
363  Entries[index].Begin = begin;
364  assert(index == 0 || begin >= Entries[index - 1].End);
365  }
366 
367  // Stretch the end of the entry to the end of the range; but if we run
368  // into the start of the next entry, just leave the range there and repeat.
369  while (end > Entries[index].End) {
370  assert(Entries[index].Type == nullptr);
371 
372  // If the range doesn't overlap the next entry, we're done.
373  if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
374  Entries[index].End = end;
375  break;
376  }
377 
378  // Otherwise, stretch to the start of the next entry.
379  Entries[index].End = Entries[index + 1].Begin;
380 
381  // Continue with the next entry.
382  index++;
383 
384  // This entry needs to be made opaque if it is not already.
385  if (Entries[index].Type == nullptr)
386  continue;
387 
388  // Split vector entries unless we completely subsume them.
389  if (Entries[index].Type->isVectorTy() &&
390  end < Entries[index].End) {
391  splitVectorEntry(index);
392  }
393 
394  // Make the entry opaque.
395  Entries[index].Type = nullptr;
396  }
397 }
398 
399 /// Replace the entry of vector type at offset 'index' with a sequence
400 /// of its component vectors.
401 void SwiftAggLowering::splitVectorEntry(unsigned index) {
402  auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
403  auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
404 
405  auto eltTy = split.first;
406  CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
407  auto numElts = split.second;
408  Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
409 
410  CharUnits begin = Entries[index].Begin;
411  for (unsigned i = 0; i != numElts; ++i) {
412  unsigned idx = index + i;
413  Entries[idx].Type = eltTy;
414  Entries[idx].Begin = begin;
415  Entries[idx].End = begin + eltSize;
416  begin += eltSize;
417  }
418 }
419 
420 /// Given a power-of-two unit size, return the offset of the aligned unit
421 /// of that size which contains the given offset.
422 ///
423 /// In other words, round down to the nearest multiple of the unit size.
425  assert(isPowerOf2(unitSize.getQuantity()));
426  auto unitMask = ~(unitSize.getQuantity() - 1);
427  return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
428 }
429 
430 static bool areBytesInSameUnit(CharUnits first, CharUnits second,
431  CharUnits chunkSize) {
432  return getOffsetAtStartOfUnit(first, chunkSize)
433  == getOffsetAtStartOfUnit(second, chunkSize);
434 }
435 
436 static bool isMergeableEntryType(llvm::Type *type) {
437  // Opaquely-typed memory is always mergeable.
438  if (type == nullptr) return true;
439 
440  // Pointers and integers are always mergeable. In theory we should not
441  // merge pointers, but (1) it doesn't currently matter in practice because
442  // the chunk size is never greater than the size of a pointer and (2)
443  // Swift IRGen uses integer types for a lot of things that are "really"
444  // just storing pointers (like std::optional<SomePointer>). If we ever have a
445  // target that would otherwise combine pointers, we should put some effort
446  // into fixing those cases in Swift IRGen and then call out pointer types
447  // here.
448 
449  // Floating-point and vector types should never be merged.
450  // Most such types are too large and highly-aligned to ever trigger merging
451  // in practice, but it's important for the rule to cover at least 'half'
452  // and 'float', as well as things like small vectors of 'i1' or 'i8'.
453  return (!type->isFloatingPointTy() && !type->isVectorTy());
454 }
455 
456 bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
457  const StorageEntry &second,
458  CharUnits chunkSize) {
459  // Only merge entries that overlap the same chunk. We test this first
460  // despite being a bit more expensive because this is the condition that
461  // tends to prevent merging.
462  if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
463  chunkSize))
464  return false;
465 
466  return (isMergeableEntryType(first.Type) &&
467  isMergeableEntryType(second.Type));
468 }
469 
471  if (Entries.empty()) {
472  Finished = true;
473  return;
474  }
475 
476  // We logically split the layout down into a series of chunks of this size,
477  // which is generally the size of a pointer.
478  const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
479 
480  // First pass: if two entries should be merged, make them both opaque
481  // and stretch one to meet the next.
482  // Also, remember if there are any opaque entries.
483  bool hasOpaqueEntries = (Entries[0].Type == nullptr);
484  for (size_t i = 1, e = Entries.size(); i != e; ++i) {
485  if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
486  Entries[i - 1].Type = nullptr;
487  Entries[i].Type = nullptr;
488  Entries[i - 1].End = Entries[i].Begin;
489  hasOpaqueEntries = true;
490 
491  } else if (Entries[i].Type == nullptr) {
492  hasOpaqueEntries = true;
493  }
494  }
495 
496  // The rest of the algorithm leaves non-opaque entries alone, so if we
497  // have no opaque entries, we're done.
498  if (!hasOpaqueEntries) {
499  Finished = true;
500  return;
501  }
502 
503  // Okay, move the entries to a temporary and rebuild Entries.
504  auto orig = std::move(Entries);
505  assert(Entries.empty());
506 
507  for (size_t i = 0, e = orig.size(); i != e; ++i) {
508  // Just copy over non-opaque entries.
509  if (orig[i].Type != nullptr) {
510  Entries.push_back(orig[i]);
511  continue;
512  }
513 
514  // Scan forward to determine the full extent of the next opaque range.
515  // We know from the first pass that only contiguous ranges will overlap
516  // the same aligned chunk.
517  auto begin = orig[i].Begin;
518  auto end = orig[i].End;
519  while (i + 1 != e &&
520  orig[i + 1].Type == nullptr &&
521  end == orig[i + 1].Begin) {
522  end = orig[i + 1].End;
523  i++;
524  }
525 
526  // Add an entry per intersected chunk.
527  do {
528  // Find the smallest aligned storage unit in the maximal aligned
529  // storage unit containing 'begin' that contains all the bytes in
530  // the intersection between the range and this chunk.
531  CharUnits localBegin = begin;
532  CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
533  CharUnits chunkEnd = chunkBegin + chunkSize;
534  CharUnits localEnd = std::min(end, chunkEnd);
535 
536  // Just do a simple loop over ever-increasing unit sizes.
537  CharUnits unitSize = CharUnits::One();
538  CharUnits unitBegin, unitEnd;
539  for (; ; unitSize *= 2) {
540  assert(unitSize <= chunkSize);
541  unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
542  unitEnd = unitBegin + unitSize;
543  if (unitEnd >= localEnd) break;
544  }
545 
546  // Add an entry for this unit.
547  auto entryTy =
548  llvm::IntegerType::get(CGM.getLLVMContext(),
549  CGM.getContext().toBits(unitSize));
550  Entries.push_back({unitBegin, unitEnd, entryTy});
551 
552  // The next chunk starts where this chunk left off.
553  begin = localEnd;
554  } while (begin != end);
555  }
556 
557  // Okay, finally finished.
558  Finished = true;
559 }
560 
562  assert(Finished && "haven't yet finished lowering");
563 
564  for (auto &entry : Entries) {
565  callback(entry.Begin, entry.End, entry.Type);
566  }
567 }
568 
569 std::pair<llvm::StructType*, llvm::Type*>
571  assert(Finished && "haven't yet finished lowering");
572 
573  auto &ctx = CGM.getLLVMContext();
574 
575  if (Entries.empty()) {
576  auto type = llvm::StructType::get(ctx);
577  return { type, type };
578  }
579 
581  CharUnits lastEnd = CharUnits::Zero();
582  bool hasPadding = false;
583  bool packed = false;
584  for (auto &entry : Entries) {
585  if (entry.Begin != lastEnd) {
586  auto paddingSize = entry.Begin - lastEnd;
587  assert(!paddingSize.isNegative());
588 
589  auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
590  paddingSize.getQuantity());
591  elts.push_back(padding);
592  hasPadding = true;
593  }
594 
595  if (!packed && !entry.Begin.isMultipleOf(CharUnits::fromQuantity(
596  CGM.getDataLayout().getABITypeAlign(entry.Type))))
597  packed = true;
598 
599  elts.push_back(entry.Type);
600 
601  lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
602  assert(entry.End <= lastEnd);
603  }
604 
605  // We don't need to adjust 'packed' to deal with possible tail padding
606  // because we never do that kind of access through the coercion type.
607  auto coercionType = llvm::StructType::get(ctx, elts, packed);
608 
609  llvm::Type *unpaddedType = coercionType;
610  if (hasPadding) {
611  elts.clear();
612  for (auto &entry : Entries) {
613  elts.push_back(entry.Type);
614  }
615  if (elts.size() == 1) {
616  unpaddedType = elts[0];
617  } else {
618  unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
619  }
620  } else if (Entries.size() == 1) {
621  unpaddedType = Entries[0].Type;
622  }
623 
624  return { coercionType, unpaddedType };
625 }
626 
627 bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
628  assert(Finished && "haven't yet finished lowering");
629 
630  // Empty types don't need to be passed indirectly.
631  if (Entries.empty()) return false;
632 
633  // Avoid copying the array of types when there's just a single element.
634  if (Entries.size() == 1) {
635  return getSwiftABIInfo(CGM).shouldPassIndirectly(Entries.back().Type,
636  asReturnValue);
637  }
638 
639  SmallVector<llvm::Type*, 8> componentTys;
640  componentTys.reserve(Entries.size());
641  for (auto &entry : Entries) {
642  componentTys.push_back(entry.Type);
643  }
644  return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
645 }
646 
648  ArrayRef<llvm::Type*> componentTys,
649  bool asReturnValue) {
650  return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
651 }
652 
654  // Currently always the size of an ordinary pointer.
655  return CGM.getContext().toCharUnitsFromBits(
657 }
658 
660  // For Swift's purposes, this is always just the store size of the type
661  // rounded up to a power of 2.
662  auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
663  size = llvm::bit_ceil(size);
664  assert(CGM.getDataLayout().getABITypeAlign(type) <= size);
665  return CharUnits::fromQuantity(size);
666 }
667 
669  llvm::IntegerType *intTy) {
670  auto size = intTy->getBitWidth();
671  switch (size) {
672  case 1:
673  case 8:
674  case 16:
675  case 32:
676  case 64:
677  // Just assume that the above are always legal.
678  return true;
679 
680  case 128:
681  return CGM.getContext().getTargetInfo().hasInt128Type();
682 
683  default:
684  return false;
685  }
686 }
687 
689  llvm::VectorType *vectorTy) {
690  return isLegalVectorType(
691  CGM, vectorSize, vectorTy->getElementType(),
692  cast<llvm::FixedVectorType>(vectorTy)->getNumElements());
693 }
694 
696  llvm::Type *eltTy, unsigned numElts) {
697  assert(numElts > 1 && "illegal vector length");
698  return getSwiftABIInfo(CGM).isLegalVectorType(vectorSize, eltTy, numElts);
699 }
700 
701 std::pair<llvm::Type*, unsigned>
703  llvm::VectorType *vectorTy) {
704  auto numElts = cast<llvm::FixedVectorType>(vectorTy)->getNumElements();
705  auto eltTy = vectorTy->getElementType();
706 
707  // Try to split the vector type in half.
708  if (numElts >= 4 && isPowerOf2(numElts)) {
709  if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
710  return {llvm::FixedVectorType::get(eltTy, numElts / 2), 2};
711  }
712 
713  return {eltTy, numElts};
714 }
715 
717  llvm::VectorType *origVectorTy,
719  // If it's already a legal vector type, use it.
720  if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
721  components.push_back(origVectorTy);
722  return;
723  }
724 
725  // Try to split the vector into legal subvectors.
726  auto numElts = cast<llvm::FixedVectorType>(origVectorTy)->getNumElements();
727  auto eltTy = origVectorTy->getElementType();
728  assert(numElts != 1);
729 
730  // The largest size that we're still considering making subvectors of.
731  // Always a power of 2.
732  unsigned logCandidateNumElts = llvm::Log2_32(numElts);
733  unsigned candidateNumElts = 1U << logCandidateNumElts;
734  assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
735 
736  // Minor optimization: don't check the legality of this exact size twice.
737  if (candidateNumElts == numElts) {
738  logCandidateNumElts--;
739  candidateNumElts >>= 1;
740  }
741 
742  CharUnits eltSize = (origVectorSize / numElts);
743  CharUnits candidateSize = eltSize * candidateNumElts;
744 
745  // The sensibility of this algorithm relies on the fact that we never
746  // have a legal non-power-of-2 vector size without having the power of 2
747  // also be legal.
748  while (logCandidateNumElts > 0) {
749  assert(candidateNumElts == 1U << logCandidateNumElts);
750  assert(candidateNumElts <= numElts);
751  assert(candidateSize == eltSize * candidateNumElts);
752 
753  // Skip illegal vector sizes.
754  if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
755  logCandidateNumElts--;
756  candidateNumElts /= 2;
757  candidateSize /= 2;
758  continue;
759  }
760 
761  // Add the right number of vectors of this size.
762  auto numVecs = numElts >> logCandidateNumElts;
763  components.append(numVecs,
764  llvm::FixedVectorType::get(eltTy, candidateNumElts));
765  numElts -= (numVecs << logCandidateNumElts);
766 
767  if (numElts == 0) return;
768 
769  // It's possible that the number of elements remaining will be legal.
770  // This can happen with e.g. <7 x float> when <3 x float> is legal.
771  // This only needs to be separately checked if it's not a power of 2.
772  if (numElts > 2 && !isPowerOf2(numElts) &&
773  isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
774  components.push_back(llvm::FixedVectorType::get(eltTy, numElts));
775  return;
776  }
777 
778  // Bring vecSize down to something no larger than numElts.
779  do {
780  logCandidateNumElts--;
781  candidateNumElts /= 2;
782  candidateSize /= 2;
783  } while (candidateNumElts > numElts);
784  }
785 
786  // Otherwise, just append a bunch of individual elements.
787  components.append(numElts, eltTy);
788 }
789 
791  const RecordDecl *record) {
792  // FIXME: should we not rely on the standard computation in Sema, just in
793  // case we want to diverge from the platform ABI (e.g. on targets where
794  // that uses the MSVC rule)?
795  return !record->canPassInRegisters();
796 }
797 
799  bool forReturn,
800  CharUnits alignmentForIndirect) {
801  if (lowering.empty()) {
802  return ABIArgInfo::getIgnore();
803  } else if (lowering.shouldPassIndirectly(forReturn)) {
804  return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
805  } else {
806  auto types = lowering.getCoerceAndExpandTypes();
807  return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
808  }
809 }
810 
812  bool forReturn) {
813  if (auto recordType = dyn_cast<RecordType>(type)) {
814  auto record = recordType->getDecl();
815  auto &layout = CGM.getContext().getASTRecordLayout(record);
816 
817  if (mustPassRecordIndirectly(CGM, record))
818  return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
819 
820  SwiftAggLowering lowering(CGM);
821  lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
822  lowering.finish();
823 
824  return classifyExpandedType(lowering, forReturn, layout.getAlignment());
825  }
826 
827  // Just assume that all of our target ABIs can support returning at least
828  // two integer or floating-point values.
829  if (isa<ComplexType>(type)) {
830  return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
831  }
832 
833  // Vector types may need to be legalized.
834  if (isa<VectorType>(type)) {
835  SwiftAggLowering lowering(CGM);
836  lowering.addTypedData(type, CharUnits::Zero());
837  lowering.finish();
838 
839  CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
840  return classifyExpandedType(lowering, forReturn, alignment);
841  }
842 
843  // Member pointer types need to be expanded, but it's a simple form of
844  // expansion that 'Direct' can handle. Note that CanBeFlattened should be
845  // true for this to work.
846 
847  // 'void' needs to be ignored.
848  if (type->isVoidType()) {
849  return ABIArgInfo::getIgnore();
850  }
851 
852  // Everything else can be passed directly.
853  return ABIArgInfo::getDirect();
854 }
855 
857  return classifyType(CGM, type, /*forReturn*/ true);
858 }
859 
861  CanQualType type) {
862  return classifyType(CGM, type, /*forReturn*/ false);
863 }
864 
866  auto &retInfo = FI.getReturnInfo();
867  retInfo = classifyReturnType(CGM, FI.getReturnType());
868 
869  for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
870  auto &argInfo = FI.arg_begin()[i];
871  argInfo.info = classifyArgumentType(CGM, argInfo.type);
872  }
873 }
874 
875 // Is swifterror lowered to a register by the target ABI.
878 }
static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type, bool forReturn)
static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize)
Given a power-of-two unit size, return the offset of the aligned unit of that size which contains the...
static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type)
static bool isPowerOf2(unsigned n)
static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering, bool forReturn, CharUnits alignmentForIndirect)
static const SwiftABIInfo & getSwiftABIInfo(CodeGenModule &CGM)
static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type)
static bool areBytesInSameUnit(CharUnits first, CharUnits second, CharUnits chunkSize)
static llvm::Type * getCommonType(llvm::Type *first, llvm::Type *second)
Given two types with the same size, try to find a common type.
static bool isMergeableEntryType(llvm::Type *type)
SourceLocation End
SourceLocation Begin
__DEVICE__ int min(int __a, int __b)
CharUnits getTypeAlignInChars(QualType T) const
Return the ABI-specified alignment of a (complete) type T, in characters.
const ASTRecordLayout & getASTRecordLayout(const RecordDecl *D) const
Get or compute information about the layout of the specified record (struct/union/class) D,...
const ConstantArrayType * getAsConstantArrayType(QualType T) const
Definition: ASTContext.h:2782
int64_t toBits(CharUnits CharSize) const
Convert a size in characters to a size in bits.
CharUnits getTypeSizeInChars(QualType T) const
Return the size of the specified (complete) type T, in characters.
const TargetInfo & getTargetInfo() const
Definition: ASTContext.h:760
CharUnits toCharUnitsFromBits(int64_t BitSize) const
Convert a size in bits to a size in characters.
ASTRecordLayout - This class contains layout information for one RecordDecl, which is a struct/union/...
Definition: RecordLayout.h:38
bool hasOwnVFPtr() const
hasOwnVFPtr - Does this class provide its own virtual-function table pointer, rather than inheriting ...
Definition: RecordLayout.h:280
bool hasOwnVBPtr() const
hasOwnVBPtr - Does this class provide its own virtual-base table pointer, rather than inheriting one ...
Definition: RecordLayout.h:300
uint64_t getFieldOffset(unsigned FieldNo) const
getFieldOffset - Get the offset of the given field index, in bits.
Definition: RecordLayout.h:200
CharUnits getVBPtrOffset() const
getVBPtrOffset - Get the offset for virtual base table pointer.
Definition: RecordLayout.h:324
CharUnits getBaseClassOffset(const CXXRecordDecl *Base) const
getBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:249
CharUnits getVBaseClassOffset(const CXXRecordDecl *VBase) const
getVBaseClassOffset - Get the offset, in chars, for the given base class.
Definition: RecordLayout.h:259
CharUnits - This is an opaque type for sizes expressed in character units.
Definition: CharUnits.h:38
bool isZero() const
isZero - Test whether the quantity equals zero.
Definition: CharUnits.h:122
QuantityType getQuantity() const
getQuantity - Get the raw integer representation of this quantity.
Definition: CharUnits.h:185
static CharUnits One()
One - Construct a CharUnits quantity of one.
Definition: CharUnits.h:58
bool isMultipleOf(CharUnits N) const
Test whether this is a multiple of the other value.
Definition: CharUnits.h:143
static CharUnits fromQuantity(QuantityType Quantity)
fromQuantity - Construct a CharUnits quantity from a raw integer type.
Definition: CharUnits.h:63
static CharUnits Zero()
Zero - Construct a CharUnits quantity of zero.
Definition: CharUnits.h:53
ABIArgInfo - Helper class to encapsulate information about how a specific C type should be passed to ...
static ABIArgInfo getIgnore()
static ABIArgInfo getExpand()
static ABIArgInfo getIndirect(CharUnits Alignment, bool ByVal=true, bool Realign=false, llvm::Type *Padding=nullptr)
static ABIArgInfo getDirect(llvm::Type *T=nullptr, unsigned Offset=0, llvm::Type *Padding=nullptr, bool CanBeFlattened=true, unsigned Align=0)
static ABIArgInfo getCoerceAndExpand(llvm::StructType *coerceToType, llvm::Type *unpaddedCoerceToType)
CGFunctionInfo - Class to encapsulate the information about a function definition.
const_arg_iterator arg_begin() const
CanQualType getReturnType() const
This class organizes the cross-function state that is used while generating LLVM code.
const llvm::DataLayout & getDataLayout() const
llvm::LLVMContext & getLLVMContext()
const TargetCodeGenInfo & getTargetCodeGenInfo()
ASTContext & getContext() const
llvm::Type * ConvertType(QualType T)
ConvertType - Convert type T into a llvm::Type.
Target specific hooks for defining how a type should be passed or returned from functions with one of...
Definition: ABIInfo.h:128
virtual bool isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy, unsigned NumElts) const
Returns true if the given vector type is legal from Swift's calling convention perspective.
Definition: ABIInfo.cpp:278
bool isSwiftErrorInRegister() const
Returns true if swifterror is lowered to a register by the target ABI.
Definition: ABIInfo.h:153
virtual bool shouldPassIndirectly(ArrayRef< llvm::Type * > ComponentTys, bool AsReturnValue) const
Returns true if an aggregate which expands to the given type sequence should be passed / returned ind...
Definition: ABIInfo.cpp:273
const SwiftABIInfo & getSwiftABIInfo() const
Returns Swift ABI info helper for the target.
Definition: TargetInfo.h:68
void addOpaqueData(CharUnits begin, CharUnits end)
std::pair< llvm::StructType *, llvm::Type * > getCoerceAndExpandTypes() const
Return the types for a coerce-and-expand operation.
void enumerateComponents(EnumerationCallback callback) const
Enumerate the expanded components of this type.
llvm::function_ref< void(CharUnits offset, CharUnits end, llvm::Type *type)> EnumerationCallback
bool empty() const
Does this lowering require passing any data?
void addTypedData(QualType type, CharUnits begin)
bool shouldPassIndirectly(bool asReturnValue) const
According to the target Swift ABI, should a value with this lowering be passed indirectly?
Complex values, per C99 6.2.5p11.
Definition: Type.h:3098
Represents a member of a struct/union/class.
Definition: Decl.h:3060
bool isBitField() const
Determines whether this field is a bitfield.
Definition: Decl.h:3151
unsigned getBitWidthValue(const ASTContext &Ctx) const
Computes the bit width of this field, if this is a bit field.
Definition: Decl.cpp:4596
A pointer to member type per C++ 8.3.3 - Pointers to members.
Definition: Type.h:3472
A (possibly-)qualified type.
Definition: Type.h:940
Represents a struct/union/class.
Definition: Decl.h:4171
bool canPassInRegisters() const
Determine whether this class can be passed in registers.
Definition: Decl.h:4300
field_range fields() const
Definition: Decl.h:4377
A helper class that allows the use of isa/cast/dyncast to detect TagType objects of structs/unions/cl...
Definition: Type.h:5561
bool isUnion() const
Definition: Decl.h:3793
uint64_t getPointerWidth(LangAS AddrSpace) const
Return the width of pointers on this target, for the specified address space.
Definition: TargetInfo.h:472
virtual bool hasInt128Type() const
Determine whether the __int128 type is supported on this target.
Definition: TargetInfo.h:655
The base class of the type hierarchy.
Definition: Type.h:1813
Defines the clang::TargetInfo interface.
bool isSwiftErrorLoweredInRegister(CodeGenModule &CGM)
Is swifterror lowered to a register by the target ABI?
bool shouldPassIndirectly(CodeGenModule &CGM, ArrayRef< llvm::Type * > types, bool asReturnValue)
Should an aggregate which expands to the given type sequence be passed/returned indirectly under swif...
ABIArgInfo classifyReturnType(CodeGenModule &CGM, CanQualType type)
Classify the rules for how to return a particular type.
bool mustPassRecordIndirectly(CodeGenModule &CGM, const RecordDecl *record)
Is the given record type required to be passed and returned indirectly because of language restrictio...
ABIArgInfo classifyArgumentType(CodeGenModule &CGM, CanQualType type)
Classify the rules for how to pass a particular type.
bool isLegalIntegerType(CodeGenModule &CGM, llvm::IntegerType *type)
Is the given integer type "legal" for Swift's perspective on the current platform?
void legalizeVectorType(CodeGenModule &CGM, CharUnits vectorSize, llvm::VectorType *vectorTy, llvm::SmallVectorImpl< llvm::Type * > &types)
Turn a vector type in a sequence of legal component vector types.
void computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI)
Compute the ABI information of a swiftcall function.
bool isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, llvm::VectorType *vectorTy)
Is the given vector type "legal" for Swift's perspective on the current platform?
std::pair< llvm::Type *, unsigned > splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize, llvm::VectorType *vectorTy)
Minimally split a legal vector type.
CharUnits getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type)
Return the Swift CC's notion of the natural alignment of a type.
CharUnits getMaximumVoluntaryIntegerSize(CodeGenModule &CGM)
Return the maximum voluntary integer size for the current target.
const internal::VariadicAllOfMatcher< Type > type
Matches Types in the clang AST.
const AstTypeMatcher< ArrayType > arrayType
Matches all kinds of arrays.
const AstTypeMatcher< AtomicType > atomicType
Matches atomic types.
const AstTypeMatcher< RecordType > recordType
Matches record types (e.g.
const AstTypeMatcher< ComplexType > complexType
Matches C99 complex types.
The JSON file list parser is used to communicate input to InstallAPI.
unsigned long uint64_t