clang  20.0.0git
SemaModule.cpp
Go to the documentation of this file.
1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for modules (C++ modules syntax,
10 // Objective-C modules syntax, and Clang header modules).
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTConsumer.h"
16 #include "clang/Lex/HeaderSearch.h"
17 #include "clang/Lex/Preprocessor.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include <optional>
21 
22 using namespace clang;
23 using namespace sema;
24 
26  SourceLocation ImportLoc, DeclContext *DC,
27  bool FromInclude = false) {
28  SourceLocation ExternCLoc;
29 
30  if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
31  switch (LSD->getLanguage()) {
33  if (ExternCLoc.isInvalid())
34  ExternCLoc = LSD->getBeginLoc();
35  break;
37  break;
38  }
39  DC = LSD->getParent();
40  }
41 
42  while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
43  DC = DC->getParent();
44 
45  if (!isa<TranslationUnitDecl>(DC)) {
46  S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
47  ? diag::ext_module_import_not_at_top_level_noop
48  : diag::err_module_import_not_at_top_level_fatal)
49  << M->getFullModuleName() << DC;
50  S.Diag(cast<Decl>(DC)->getBeginLoc(),
51  diag::note_module_import_not_at_top_level)
52  << DC;
53  } else if (!M->IsExternC && ExternCLoc.isValid()) {
54  S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
55  << M->getFullModuleName();
56  S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
57  }
58 }
59 
60 // We represent the primary and partition names as 'Paths' which are sections
61 // of the hierarchical access path for a clang module. However for C++20
62 // the periods in a name are just another character, and we will need to
63 // flatten them into a string.
64 static std::string stringFromPath(ModuleIdPath Path) {
65  std::string Name;
66  if (Path.empty())
67  return Name;
68 
69  for (auto &Piece : Path) {
70  if (!Name.empty())
71  Name += ".";
72  Name += Piece.first->getName();
73  }
74  return Name;
75 }
76 
77 /// Helper function for makeTransitiveImportsVisible to decide whether
78 /// the \param Imported module unit is in the same module with the \param
79 /// CurrentModule.
80 /// \param FoundPrimaryModuleInterface is a helper parameter to record the
81 /// primary module interface unit corresponding to the module \param
82 /// CurrentModule. Since currently it is expensive to decide whether two module
83 /// units come from the same module by comparing the module name.
84 static bool
86  Module *CurrentModule,
87  Module *&FoundPrimaryModuleInterface) {
88  if (!Imported->isNamedModule())
89  return false;
90 
91  // The a partition unit we're importing must be in the same module of the
92  // current module.
93  if (Imported->isModulePartition())
94  return true;
95 
96  // If we found the primary module interface during the search process, we can
97  // return quickly to avoid expensive string comparison.
98  if (FoundPrimaryModuleInterface)
99  return Imported == FoundPrimaryModuleInterface;
100 
101  if (!CurrentModule)
102  return false;
103 
104  // Then the imported module must be a primary module interface unit. It
105  // is only allowed to import the primary module interface unit from the same
106  // module in the implementation unit and the implementation partition unit.
107 
108  // Since we'll handle implementation unit above. We can only care
109  // about the implementation partition unit here.
110  if (!CurrentModule->isModulePartitionImplementation())
111  return false;
112 
113  if (Ctx.isInSameModule(Imported, CurrentModule)) {
114  assert(!FoundPrimaryModuleInterface ||
115  FoundPrimaryModuleInterface == Imported);
116  FoundPrimaryModuleInterface = Imported;
117  return true;
118  }
119 
120  return false;
121 }
122 
123 /// [module.import]p7:
124 /// Additionally, when a module-import-declaration in a module unit of some
125 /// module M imports another module unit U of M, it also imports all
126 /// translation units imported by non-exported module-import-declarations in
127 /// the module unit purview of U. These rules can in turn lead to the
128 /// importation of yet more translation units.
129 static void
131  Module *Imported, Module *CurrentModule,
132  SourceLocation ImportLoc,
133  bool IsImportingPrimaryModuleInterface = false) {
134  assert(Imported->isNamedModule() &&
135  "'makeTransitiveImportsVisible()' is intended for standard C++ named "
136  "modules only.");
137 
139  Worklist.push_back(Imported);
140 
141  Module *FoundPrimaryModuleInterface =
142  IsImportingPrimaryModuleInterface ? Imported : nullptr;
143 
144  while (!Worklist.empty()) {
145  Module *Importing = Worklist.pop_back_val();
146 
147  if (VisibleModules.isVisible(Importing))
148  continue;
149 
150  // FIXME: The ImportLoc here is not meaningful. It may be problematic if we
151  // use the sourcelocation loaded from the visible modules.
152  VisibleModules.setVisible(Importing, ImportLoc);
153 
154  if (isImportingModuleUnitFromSameModule(Ctx, Importing, CurrentModule,
155  FoundPrimaryModuleInterface))
156  for (Module *TransImported : Importing->Imports)
157  if (!VisibleModules.isVisible(TransImported))
158  Worklist.push_back(TransImported);
159  }
160 }
161 
164  // We start in the global module;
165  Module *GlobalModule =
166  PushGlobalModuleFragment(ModuleLoc);
167 
168  // All declarations created from now on are owned by the global module.
169  auto *TU = Context.getTranslationUnitDecl();
170  // [module.global.frag]p2
171  // A global-module-fragment specifies the contents of the global module
172  // fragment for a module unit. The global module fragment can be used to
173  // provide declarations that are attached to the global module and usable
174  // within the module unit.
175  //
176  // So the declations in the global module shouldn't be visible by default.
178  TU->setLocalOwningModule(GlobalModule);
179 
180  // FIXME: Consider creating an explicit representation of this declaration.
181  return nullptr;
182 }
183 
184 void Sema::HandleStartOfHeaderUnit() {
185  assert(getLangOpts().CPlusPlusModules &&
186  "Header units are only valid for C++20 modules");
187  SourceLocation StartOfTU =
188  SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
189 
190  StringRef HUName = getLangOpts().CurrentModule;
191  if (HUName.empty()) {
192  HUName =
193  SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID())->getName();
194  const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str();
195  }
196 
197  // TODO: Make the C++20 header lookup independent.
198  // When the input is pre-processed source, we need a file ref to the original
199  // file for the header map.
200  auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName);
201  // For the sake of error recovery (if someone has moved the original header
202  // after creating the pre-processed output) fall back to obtaining the file
203  // ref for the input file, which must be present.
204  if (!F)
205  F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID());
206  assert(F && "failed to find the header unit source?");
207  Module::Header H{HUName.str(), HUName.str(), *F};
208  auto &Map = PP.getHeaderSearchInfo().getModuleMap();
209  Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H);
210  assert(Mod && "module creation should not fail");
211  ModuleScopes.push_back({}); // No GMF
212  ModuleScopes.back().BeginLoc = StartOfTU;
213  ModuleScopes.back().Module = Mod;
214  VisibleModules.setVisible(Mod, StartOfTU);
215 
216  // From now on, we have an owning module for all declarations we see.
217  // All of these are implicitly exported.
218  auto *TU = Context.getTranslationUnitDecl();
220  TU->setLocalOwningModule(Mod);
221 }
222 
223 /// Tests whether the given identifier is reserved as a module name and
224 /// diagnoses if it is. Returns true if a diagnostic is emitted and false
225 /// otherwise.
226 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II,
228  enum {
229  Valid = -1,
230  Invalid = 0,
231  Reserved = 1,
232  } Reason = Valid;
233 
234  if (II->isStr("module") || II->isStr("import"))
235  Reason = Invalid;
236  else if (II->isReserved(S.getLangOpts()) !=
238  Reason = Reserved;
239 
240  // If the identifier is reserved (not invalid) but is in a system header,
241  // we do not diagnose (because we expect system headers to use reserved
242  // identifiers).
243  if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc))
244  Reason = Valid;
245 
246  switch (Reason) {
247  case Valid:
248  return false;
249  case Invalid:
250  return S.Diag(Loc, diag::err_invalid_module_name) << II;
251  case Reserved:
252  S.Diag(Loc, diag::warn_reserved_module_name) << II;
253  return false;
254  }
255  llvm_unreachable("fell off a fully covered switch");
256 }
257 
261  ModuleIdPath Partition, ModuleImportState &ImportState) {
262  assert(getLangOpts().CPlusPlusModules &&
263  "should only have module decl in standard C++ modules");
264 
265  bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl;
266  bool SeenGMF = ImportState == ModuleImportState::GlobalFragment;
267  // If any of the steps here fail, we count that as invalidating C++20
268  // module state;
269  ImportState = ModuleImportState::NotACXX20Module;
270 
271  bool IsPartition = !Partition.empty();
272  if (IsPartition)
273  switch (MDK) {
274  case ModuleDeclKind::Implementation:
275  MDK = ModuleDeclKind::PartitionImplementation;
276  break;
277  case ModuleDeclKind::Interface:
278  MDK = ModuleDeclKind::PartitionInterface;
279  break;
280  default:
281  llvm_unreachable("how did we get a partition type set?");
282  }
283 
284  // A (non-partition) module implementation unit requires that we are not
285  // compiling a module of any kind. A partition implementation emits an
286  // interface (and the AST for the implementation), which will subsequently
287  // be consumed to emit a binary.
288  // A module interface unit requires that we are not compiling a module map.
289  switch (getLangOpts().getCompilingModule()) {
291  // It's OK to compile a module interface as a normal translation unit.
292  break;
293 
295  if (MDK != ModuleDeclKind::Implementation)
296  break;
297 
298  // We were asked to compile a module interface unit but this is a module
299  // implementation unit.
300  Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
301  << FixItHint::CreateInsertion(ModuleLoc, "export ");
302  MDK = ModuleDeclKind::Interface;
303  break;
304 
306  Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
307  return nullptr;
308 
310  Diag(ModuleLoc, diag::err_module_decl_in_header_unit);
311  return nullptr;
312  }
313 
314  assert(ModuleScopes.size() <= 1 && "expected to be at global module scope");
315 
316  // FIXME: Most of this work should be done by the preprocessor rather than
317  // here, in order to support macro import.
318 
319  // Only one module-declaration is permitted per source file.
320  if (isCurrentModulePurview()) {
321  Diag(ModuleLoc, diag::err_module_redeclaration);
322  Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
323  diag::note_prev_module_declaration);
324  return nullptr;
325  }
326 
327  assert((!getLangOpts().CPlusPlusModules ||
328  SeenGMF == (bool)this->TheGlobalModuleFragment) &&
329  "mismatched global module state");
330 
331  // In C++20, the module-declaration must be the first declaration if there
332  // is no global module fragment.
333  if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) {
334  Diag(ModuleLoc, diag::err_module_decl_not_at_start);
335  SourceLocation BeginLoc =
336  ModuleScopes.empty()
337  ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID())
338  : ModuleScopes.back().BeginLoc;
339  if (BeginLoc.isValid()) {
340  Diag(BeginLoc, diag::note_global_module_introducer_missing)
341  << FixItHint::CreateInsertion(BeginLoc, "module;\n");
342  }
343  }
344 
345  // C++23 [module.unit]p1: ... The identifiers module and import shall not
346  // appear as identifiers in a module-name or module-partition. All
347  // module-names either beginning with an identifier consisting of std
348  // followed by zero or more digits or containing a reserved identifier
349  // ([lex.name]) are reserved and shall not be specified in a
350  // module-declaration; no diagnostic is required.
351 
352  // Test the first part of the path to see if it's std[0-9]+ but allow the
353  // name in a system header.
354  StringRef FirstComponentName = Path[0].first->getName();
355  if (!getSourceManager().isInSystemHeader(Path[0].second) &&
356  (FirstComponentName == "std" ||
357  (FirstComponentName.starts_with("std") &&
358  llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit))))
359  Diag(Path[0].second, diag::warn_reserved_module_name) << Path[0].first;
360 
361  // Then test all of the components in the path to see if any of them are
362  // using another kind of reserved or invalid identifier.
363  for (auto Part : Path) {
364  if (DiagReservedModuleName(*this, Part.first, Part.second))
365  return nullptr;
366  }
367 
368  // Flatten the dots in a module name. Unlike Clang's hierarchical module map
369  // modules, the dots here are just another character that can appear in a
370  // module name.
371  std::string ModuleName = stringFromPath(Path);
372  if (IsPartition) {
373  ModuleName += ":";
374  ModuleName += stringFromPath(Partition);
375  }
376  // If a module name was explicitly specified on the command line, it must be
377  // correct.
378  if (!getLangOpts().CurrentModule.empty() &&
379  getLangOpts().CurrentModule != ModuleName) {
380  Diag(Path.front().second, diag::err_current_module_name_mismatch)
381  << SourceRange(Path.front().second, IsPartition
382  ? Partition.back().second
383  : Path.back().second)
384  << getLangOpts().CurrentModule;
385  return nullptr;
386  }
387  const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
388 
389  auto &Map = PP.getHeaderSearchInfo().getModuleMap();
390  Module *Mod; // The module we are creating.
391  Module *Interface = nullptr; // The interface for an implementation.
392  switch (MDK) {
393  case ModuleDeclKind::Interface:
394  case ModuleDeclKind::PartitionInterface: {
395  // We can't have parsed or imported a definition of this module or parsed a
396  // module map defining it already.
397  if (auto *M = Map.findModule(ModuleName)) {
398  Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
399  if (M->DefinitionLoc.isValid())
400  Diag(M->DefinitionLoc, diag::note_prev_module_definition);
401  else if (OptionalFileEntryRef FE = M->getASTFile())
402  Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
403  << FE->getName();
404  Mod = M;
405  break;
406  }
407 
408  // Create a Module for the module that we're defining.
409  Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
410  if (MDK == ModuleDeclKind::PartitionInterface)
412  assert(Mod && "module creation should not fail");
413  break;
414  }
415 
416  case ModuleDeclKind::Implementation: {
417  // C++20 A module-declaration that contains neither an export-
418  // keyword nor a module-partition implicitly imports the primary
419  // module interface unit of the module as if by a module-import-
420  // declaration.
421  std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
422  PP.getIdentifierInfo(ModuleName), Path[0].second);
423 
424  // The module loader will assume we're trying to import the module that
425  // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'.
426  // Change the value for `LangOpts.CurrentModule` temporarily to make the
427  // module loader work properly.
428  const_cast<LangOptions &>(getLangOpts()).CurrentModule = "";
429  Interface = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc},
431  /*IsInclusionDirective=*/false);
432  const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
433 
434  if (!Interface) {
435  Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
436  // Create an empty module interface unit for error recovery.
437  Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
438  } else {
439  Mod = Map.createModuleForImplementationUnit(ModuleLoc, ModuleName);
440  }
441  } break;
442 
443  case ModuleDeclKind::PartitionImplementation:
444  // Create an interface, but note that it is an implementation
445  // unit.
446  Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
448  break;
449  }
450 
451  if (!this->TheGlobalModuleFragment) {
452  ModuleScopes.push_back({});
453  if (getLangOpts().ModulesLocalVisibility)
454  ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
455  } else {
456  // We're done with the global module fragment now.
457  ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global);
458  }
459 
460  // Switch from the global module fragment (if any) to the named module.
461  ModuleScopes.back().BeginLoc = StartLoc;
462  ModuleScopes.back().Module = Mod;
463  VisibleModules.setVisible(Mod, ModuleLoc);
464 
465  // From now on, we have an owning module for all declarations we see.
466  // In C++20 modules, those declaration would be reachable when imported
467  // unless explicitily exported.
468  // Otherwise, those declarations are module-private unless explicitly
469  // exported.
470  auto *TU = Context.getTranslationUnitDecl();
472  TU->setLocalOwningModule(Mod);
473 
474  // We are in the module purview, but before any other (non import)
475  // statements, so imports are allowed.
476  ImportState = ModuleImportState::ImportAllowed;
477 
478  getASTContext().setCurrentNamedModule(Mod);
479 
480  if (auto *Listener = getASTMutationListener())
481  Listener->EnteringModulePurview();
482 
483  // We already potentially made an implicit import (in the case of a module
484  // implementation unit importing its interface). Make this module visible
485  // and return the import decl to be added to the current TU.
486  if (Interface) {
487 
488  makeTransitiveImportsVisible(getASTContext(), VisibleModules, Interface,
489  Mod, ModuleLoc,
490  /*IsImportingPrimaryModuleInterface=*/true);
491 
492  // Make the import decl for the interface in the impl module.
493  ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc,
494  Interface, Path[0].second);
495  CurContext->addDecl(Import);
496 
497  // Sequence initialization of the imported module before that of the current
498  // module, if any.
499  Context.addModuleInitializer(ModuleScopes.back().Module, Import);
500  Mod->Imports.insert(Interface); // As if we imported it.
501  // Also save this as a shortcut to checking for decls in the interface
502  ThePrimaryInterface = Interface;
503  // If we made an implicit import of the module interface, then return the
504  // imported module decl.
505  return ConvertDeclToDeclGroup(Import);
506  }
507 
508  return nullptr;
509 }
510 
513  SourceLocation PrivateLoc) {
514  // C++20 [basic.link]/2:
515  // A private-module-fragment shall appear only in a primary module
516  // interface unit.
517  switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment
518  : ModuleScopes.back().Module->Kind) {
525  Diag(PrivateLoc, diag::err_private_module_fragment_not_module);
526  return nullptr;
527 
529  Diag(PrivateLoc, diag::err_private_module_fragment_redefined);
530  Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition);
531  return nullptr;
532 
534  Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface);
535  Diag(ModuleScopes.back().BeginLoc,
536  diag::note_not_module_interface_add_export)
537  << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
538  return nullptr;
539 
541  break;
542  }
543 
544  // FIXME: Check that this translation unit does not import any partitions;
545  // such imports would violate [basic.link]/2's "shall be the only module unit"
546  // restriction.
547 
548  // We've finished the public fragment of the translation unit.
549  ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal);
550 
551  auto &Map = PP.getHeaderSearchInfo().getModuleMap();
552  Module *PrivateModuleFragment =
553  Map.createPrivateModuleFragmentForInterfaceUnit(
554  ModuleScopes.back().Module, PrivateLoc);
555  assert(PrivateModuleFragment && "module creation should not fail");
556 
557  // Enter the scope of the private module fragment.
558  ModuleScopes.push_back({});
559  ModuleScopes.back().BeginLoc = ModuleLoc;
560  ModuleScopes.back().Module = PrivateModuleFragment;
561  VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc);
562 
563  // All declarations created from now on are scoped to the private module
564  // fragment (and are neither visible nor reachable in importers of the module
565  // interface).
566  auto *TU = Context.getTranslationUnitDecl();
568  TU->setLocalOwningModule(PrivateModuleFragment);
569 
570  // FIXME: Consider creating an explicit representation of this declaration.
571  return nullptr;
572 }
573 
575  SourceLocation ExportLoc,
576  SourceLocation ImportLoc, ModuleIdPath Path,
577  bool IsPartition) {
578  assert((!IsPartition || getLangOpts().CPlusPlusModules) &&
579  "partition seen in non-C++20 code?");
580 
581  // For a C++20 module name, flatten into a single identifier with the source
582  // location of the first component.
583  std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc;
584 
585  std::string ModuleName;
586  if (IsPartition) {
587  // We already checked that we are in a module purview in the parser.
588  assert(!ModuleScopes.empty() && "in a module purview, but no module?");
589  Module *NamedMod = ModuleScopes.back().Module;
590  // If we are importing into a partition, find the owning named module,
591  // otherwise, the name of the importing named module.
592  ModuleName = NamedMod->getPrimaryModuleInterfaceName().str();
593  ModuleName += ":";
594  ModuleName += stringFromPath(Path);
595  ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
596  Path = ModuleIdPath(ModuleNameLoc);
597  } else if (getLangOpts().CPlusPlusModules) {
598  ModuleName = stringFromPath(Path);
599  ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
600  Path = ModuleIdPath(ModuleNameLoc);
601  }
602 
603  // Diagnose self-import before attempting a load.
604  // [module.import]/9
605  // A module implementation unit of a module M that is not a module partition
606  // shall not contain a module-import-declaration nominating M.
607  // (for an implementation, the module interface is imported implicitly,
608  // but that's handled in the module decl code).
609 
610  if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() &&
611  getCurrentModule()->Name == ModuleName) {
612  Diag(ImportLoc, diag::err_module_self_import_cxx20)
613  << ModuleName << currentModuleIsImplementation();
614  return true;
615  }
616 
617  Module *Mod = getModuleLoader().loadModule(
618  ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false);
619  if (!Mod)
620  return true;
621 
622  if (!Mod->isInterfaceOrPartition() && !ModuleName.empty() &&
623  !getLangOpts().ObjC) {
624  Diag(ImportLoc, diag::err_module_import_non_interface_nor_parition)
625  << ModuleName;
626  return true;
627  }
628 
629  return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path);
630 }
631 
632 /// Determine whether \p D is lexically within an export-declaration.
633 static const ExportDecl *getEnclosingExportDecl(const Decl *D) {
634  for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent())
635  if (auto *ED = dyn_cast<ExportDecl>(DC))
636  return ED;
637  return nullptr;
638 }
639 
641  SourceLocation ExportLoc,
642  SourceLocation ImportLoc, Module *Mod,
643  ModuleIdPath Path) {
644  if (Mod->isHeaderUnit())
645  Diag(ImportLoc, diag::warn_experimental_header_unit);
646 
647  if (Mod->isNamedModule())
648  makeTransitiveImportsVisible(getASTContext(), VisibleModules, Mod,
649  getCurrentModule(), ImportLoc);
650  else
651  VisibleModules.setVisible(Mod, ImportLoc);
652 
653  checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
654 
655  // FIXME: we should support importing a submodule within a different submodule
656  // of the same top-level module. Until we do, make it an error rather than
657  // silently ignoring the import.
658  // FIXME: Should we warn on a redundant import of the current module?
659  if (Mod->isForBuilding(getLangOpts())) {
660  Diag(ImportLoc, getLangOpts().isCompilingModule()
661  ? diag::err_module_self_import
662  : diag::err_module_import_in_implementation)
663  << Mod->getFullModuleName() << getLangOpts().CurrentModule;
664  }
665 
666  SmallVector<SourceLocation, 2> IdentifierLocs;
667 
668  if (Path.empty()) {
669  // If this was a header import, pad out with dummy locations.
670  // FIXME: Pass in and use the location of the header-name token in this
671  // case.
672  for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent)
673  IdentifierLocs.push_back(SourceLocation());
674  } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) {
675  // A single identifier for the whole name.
676  IdentifierLocs.push_back(Path[0].second);
677  } else {
678  Module *ModCheck = Mod;
679  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
680  // If we've run out of module parents, just drop the remaining
681  // identifiers. We need the length to be consistent.
682  if (!ModCheck)
683  break;
684  ModCheck = ModCheck->Parent;
685 
686  IdentifierLocs.push_back(Path[I].second);
687  }
688  }
689 
690  ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
691  Mod, IdentifierLocs);
692  CurContext->addDecl(Import);
693 
694  // Sequence initialization of the imported module before that of the current
695  // module, if any.
696  if (!ModuleScopes.empty())
697  Context.addModuleInitializer(ModuleScopes.back().Module, Import);
698 
699  // A module (partition) implementation unit shall not be exported.
700  if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() &&
701  Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) {
702  Diag(ExportLoc, diag::err_export_partition_impl)
703  << SourceRange(ExportLoc, Path.back().second);
704  } else if (!ModuleScopes.empty() && !currentModuleIsImplementation()) {
705  // Re-export the module if the imported module is exported.
706  // Note that we don't need to add re-exported module to Imports field
707  // since `Exports` implies the module is imported already.
708  if (ExportLoc.isValid() || getEnclosingExportDecl(Import))
709  getCurrentModule()->Exports.emplace_back(Mod, false);
710  else
711  getCurrentModule()->Imports.insert(Mod);
712  } else if (ExportLoc.isValid()) {
713  // [module.interface]p1:
714  // An export-declaration shall inhabit a namespace scope and appear in the
715  // purview of a module interface unit.
716  Diag(ExportLoc, diag::err_export_not_in_module_interface);
717  }
718 
719  return Import;
720 }
721 
723  checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
724  BuildModuleInclude(DirectiveLoc, Mod);
725 }
726 
728  // Determine whether we're in the #include buffer for a module. The #includes
729  // in that buffer do not qualify as module imports; they're just an
730  // implementation detail of us building the module.
731  //
732  // FIXME: Should we even get ActOnAnnotModuleInclude calls for those?
733  bool IsInModuleIncludes =
734  TUKind == TU_ClangModule &&
735  getSourceManager().isWrittenInMainFile(DirectiveLoc);
736 
737  // If we are really importing a module (not just checking layering) due to an
738  // #include in the main file, synthesize an ImportDecl.
739  if (getLangOpts().Modules && !IsInModuleIncludes) {
740  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
741  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
742  DirectiveLoc, Mod,
743  DirectiveLoc);
744  if (!ModuleScopes.empty())
745  Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
746  TU->addDecl(ImportD);
747  Consumer.HandleImplicitImportDecl(ImportD);
748  }
749 
750  getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
751  VisibleModules.setVisible(Mod, DirectiveLoc);
752 
753  if (getLangOpts().isCompilingModule()) {
754  Module *ThisModule = PP.getHeaderSearchInfo().lookupModule(
755  getLangOpts().CurrentModule, DirectiveLoc, false, false);
756  (void)ThisModule;
757  assert(ThisModule && "was expecting a module if building one");
758  }
759 }
760 
762  checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
763 
764  ModuleScopes.push_back({});
765  ModuleScopes.back().Module = Mod;
766  if (getLangOpts().ModulesLocalVisibility)
767  ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
768 
769  VisibleModules.setVisible(Mod, DirectiveLoc);
770 
771  // The enclosing context is now part of this module.
772  // FIXME: Consider creating a child DeclContext to hold the entities
773  // lexically within the module.
774  if (getLangOpts().trackLocalOwningModule()) {
775  for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
776  cast<Decl>(DC)->setModuleOwnershipKind(
777  getLangOpts().ModulesLocalVisibility
780  cast<Decl>(DC)->setLocalOwningModule(Mod);
781  }
782  }
783 }
784 
786  if (getLangOpts().ModulesLocalVisibility) {
787  VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
788  // Leaving a module hides namespace names, so our visible namespace cache
789  // is now out of date.
790  VisibleNamespaceCache.clear();
791  }
792 
793  assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
794  "left the wrong module scope");
795  ModuleScopes.pop_back();
796 
797  // We got to the end of processing a local module. Create an
798  // ImportDecl as we would for an imported module.
799  FileID File = getSourceManager().getFileID(EomLoc);
800  SourceLocation DirectiveLoc;
801  if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
802  // We reached the end of a #included module header. Use the #include loc.
803  assert(File != getSourceManager().getMainFileID() &&
804  "end of submodule in main source file");
805  DirectiveLoc = getSourceManager().getIncludeLoc(File);
806  } else {
807  // We reached an EOM pragma. Use the pragma location.
808  DirectiveLoc = EomLoc;
809  }
810  BuildModuleInclude(DirectiveLoc, Mod);
811 
812  // Any further declarations are in whatever module we returned to.
813  if (getLangOpts().trackLocalOwningModule()) {
814  // The parser guarantees that this is the same context that we entered
815  // the module within.
816  for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
817  cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
818  if (!getCurrentModule())
819  cast<Decl>(DC)->setModuleOwnershipKind(
821  }
822  }
823 }
824 
826  Module *Mod) {
827  // Bail if we're not allowed to implicitly import a module here.
828  if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
829  VisibleModules.isVisible(Mod))
830  return;
831 
832  // Create the implicit import declaration.
833  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
834  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
835  Loc, Mod, Loc);
836  TU->addDecl(ImportD);
837  Consumer.HandleImplicitImportDecl(ImportD);
838 
839  // Make the module visible.
840  getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
841  VisibleModules.setVisible(Mod, Loc);
842 }
843 
845  SourceLocation LBraceLoc) {
846  ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
847 
848  // Set this temporarily so we know the export-declaration was braced.
849  D->setRBraceLoc(LBraceLoc);
850 
851  CurContext->addDecl(D);
852  PushDeclContext(S, D);
853 
854  // C++2a [module.interface]p1:
855  // An export-declaration shall appear only [...] in the purview of a module
856  // interface unit. An export-declaration shall not appear directly or
857  // indirectly within [...] a private-module-fragment.
858  if (!getLangOpts().HLSL) {
859  if (!isCurrentModulePurview()) {
860  Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0;
861  D->setInvalidDecl();
862  return D;
863  } else if (currentModuleIsImplementation()) {
864  Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1;
865  Diag(ModuleScopes.back().BeginLoc,
866  diag::note_not_module_interface_add_export)
867  << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
868  D->setInvalidDecl();
869  return D;
870  } else if (ModuleScopes.back().Module->Kind ==
872  Diag(ExportLoc, diag::err_export_in_private_module_fragment);
873  Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment);
874  D->setInvalidDecl();
875  return D;
876  }
877  }
878 
879  for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) {
880  if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
881  // An export-declaration shall not appear directly or indirectly within
882  // an unnamed namespace [...]
883  if (ND->isAnonymousNamespace()) {
884  Diag(ExportLoc, diag::err_export_within_anonymous_namespace);
885  Diag(ND->getLocation(), diag::note_anonymous_namespace);
886  // Don't diagnose internal-linkage declarations in this region.
887  D->setInvalidDecl();
888  return D;
889  }
890 
891  // A declaration is exported if it is [...] a namespace-definition
892  // that contains an exported declaration.
893  //
894  // Defer exporting the namespace until after we leave it, in order to
895  // avoid marking all subsequent declarations in the namespace as exported.
896  if (!getLangOpts().HLSL && !DeferredExportedNamespaces.insert(ND).second)
897  break;
898  }
899  }
900 
901  // [...] its declaration or declaration-seq shall not contain an
902  // export-declaration.
903  if (auto *ED = getEnclosingExportDecl(D)) {
904  Diag(ExportLoc, diag::err_export_within_export);
905  if (ED->hasBraces())
906  Diag(ED->getLocation(), diag::note_export);
907  D->setInvalidDecl();
908  return D;
909  }
910 
911  if (!getLangOpts().HLSL)
913 
914  return D;
915 }
916 
917 static bool checkExportedDecl(Sema &, Decl *, SourceLocation);
918 
919 /// Check that it's valid to export all the declarations in \p DC.
921  SourceLocation BlockStart) {
922  bool AllUnnamed = true;
923  for (auto *D : DC->decls())
924  AllUnnamed &= checkExportedDecl(S, D, BlockStart);
925  return AllUnnamed;
926 }
927 
928 /// Check that it's valid to export \p D.
929 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) {
930 
931  // HLSL: export declaration is valid only on functions
932  if (S.getLangOpts().HLSL) {
933  // Export-within-export was already diagnosed in ActOnStartExportDecl
934  if (!dyn_cast<FunctionDecl>(D) && !dyn_cast<ExportDecl>(D)) {
935  S.Diag(D->getBeginLoc(), diag::err_hlsl_export_not_on_function);
936  D->setInvalidDecl();
937  return false;
938  }
939  }
940 
941  // C++20 [module.interface]p3:
942  // [...] it shall not declare a name with internal linkage.
943  bool HasName = false;
944  if (auto *ND = dyn_cast<NamedDecl>(D)) {
945  // Don't diagnose anonymous union objects; we'll diagnose their members
946  // instead.
947  HasName = (bool)ND->getDeclName();
948  if (HasName && ND->getFormalLinkage() == Linkage::Internal) {
949  S.Diag(ND->getLocation(), diag::err_export_internal) << ND;
950  if (BlockStart.isValid())
951  S.Diag(BlockStart, diag::note_export);
952  return false;
953  }
954  }
955 
956  // C++2a [module.interface]p5:
957  // all entities to which all of the using-declarators ultimately refer
958  // shall have been introduced with a name having external linkage
959  if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
962  if (Lk == Linkage::Internal || Lk == Linkage::Module) {
963  S.Diag(USD->getLocation(), diag::err_export_using_internal)
964  << (Lk == Linkage::Internal ? 0 : 1) << Target;
965  S.Diag(Target->getLocation(), diag::note_using_decl_target);
966  if (BlockStart.isValid())
967  S.Diag(BlockStart, diag::note_export);
968  return false;
969  }
970  }
971 
972  // Recurse into namespace-scope DeclContexts. (Only namespace-scope
973  // declarations are exported).
974  if (auto *DC = dyn_cast<DeclContext>(D)) {
975  if (!isa<NamespaceDecl>(D))
976  return true;
977 
978  if (auto *ND = dyn_cast<NamedDecl>(D)) {
979  if (!ND->getDeclName()) {
980  S.Diag(ND->getLocation(), diag::err_export_anon_ns_internal);
981  if (BlockStart.isValid())
982  S.Diag(BlockStart, diag::note_export);
983  return false;
984  } else if (!DC->decls().empty() &&
985  DC->getRedeclContext()->isFileContext()) {
986  return checkExportedDeclContext(S, DC, BlockStart);
987  }
988  }
989  }
990  return true;
991 }
992 
994  auto *ED = cast<ExportDecl>(D);
995  if (RBraceLoc.isValid())
996  ED->setRBraceLoc(RBraceLoc);
997 
998  PopDeclContext();
999 
1000  if (!D->isInvalidDecl()) {
1001  SourceLocation BlockStart =
1002  ED->hasBraces() ? ED->getBeginLoc() : SourceLocation();
1003  for (auto *Child : ED->decls()) {
1004  checkExportedDecl(*this, Child, BlockStart);
1005  if (auto *FD = dyn_cast<FunctionDecl>(Child)) {
1006  // [dcl.inline]/7
1007  // If an inline function or variable that is attached to a named module
1008  // is declared in a definition domain, it shall be defined in that
1009  // domain.
1010  // So, if the current declaration does not have a definition, we must
1011  // check at the end of the TU (or when the PMF starts) to see that we
1012  // have a definition at that point.
1013  if (FD->isInlineSpecified() && !FD->isDefined())
1014  PendingInlineFuncDecls.insert(FD);
1015  }
1016  }
1017  }
1018 
1019  // Anything exported from a module should never be considered unused.
1020  for (auto *Exported : ED->decls())
1021  Exported->markUsed(getASTContext());
1022 
1023  return D;
1024 }
1025 
1026 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) {
1027  // We shouldn't create new global module fragment if there is already
1028  // one.
1029  if (!TheGlobalModuleFragment) {
1030  ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
1031  TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit(
1032  BeginLoc, getCurrentModule());
1033  }
1034 
1035  assert(TheGlobalModuleFragment && "module creation should not fail");
1036 
1037  // Enter the scope of the global module.
1038  ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment,
1039  /*OuterVisibleModules=*/{}});
1040  VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc);
1041 
1042  return TheGlobalModuleFragment;
1043 }
1044 
1045 void Sema::PopGlobalModuleFragment() {
1046  assert(!ModuleScopes.empty() &&
1047  getCurrentModule()->isExplicitGlobalModule() &&
1048  "left the wrong module scope, which is not global module fragment");
1049  ModuleScopes.pop_back();
1050 }
1051 
1052 Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc) {
1053  if (!TheImplicitGlobalModuleFragment) {
1054  ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
1055  TheImplicitGlobalModuleFragment =
1057  getCurrentModule());
1058  }
1059  assert(TheImplicitGlobalModuleFragment && "module creation should not fail");
1060 
1061  // Enter the scope of the global module.
1062  ModuleScopes.push_back({BeginLoc, TheImplicitGlobalModuleFragment,
1063  /*OuterVisibleModules=*/{}});
1064  VisibleModules.setVisible(TheImplicitGlobalModuleFragment, BeginLoc);
1065  return TheImplicitGlobalModuleFragment;
1066 }
1067 
1068 void Sema::PopImplicitGlobalModuleFragment() {
1069  assert(!ModuleScopes.empty() &&
1070  getCurrentModule()->isImplicitGlobalModule() &&
1071  "left the wrong module scope, which is not global module fragment");
1072  ModuleScopes.pop_back();
1073 }
1074 
1075 bool Sema::isCurrentModulePurview() const {
1076  if (!getCurrentModule())
1077  return false;
1078 
1079  /// Does this Module scope describe part of the purview of a standard named
1080  /// C++ module?
1081  switch (getCurrentModule()->Kind) {
1088  return true;
1089  default:
1090  return false;
1091  }
1092 }
const Decl * D
IndirectLocalPath & Path
enum clang::sema::@1659::IndirectLocalPathEntry::EntryKind Kind
static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc TokLoc, const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, unsigned DiagID)
Produce a diagnostic highlighting some portion of a literal.
llvm::MachO::Target Target
Definition: MachO.h:51
Defines the clang::Preprocessor interface.
static void makeTransitiveImportsVisible(ASTContext &Ctx, VisibleModuleSet &VisibleModules, Module *Imported, Module *CurrentModule, SourceLocation ImportLoc, bool IsImportingPrimaryModuleInterface=false)
[module.import]p7: Additionally, when a module-import-declaration in a module unit of some module M i...
Definition: SemaModule.cpp:130
static const ExportDecl * getEnclosingExportDecl(const Decl *D)
Determine whether D is lexically within an export-declaration.
Definition: SemaModule.cpp:633
static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II, SourceLocation Loc)
Tests whether the given identifier is reserved as a module name and diagnoses if it is.
Definition: SemaModule.cpp:226
static bool checkExportedDecl(Sema &, Decl *, SourceLocation)
Check that it's valid to export D.
Definition: SemaModule.cpp:929
static std::string stringFromPath(ModuleIdPath Path)
Definition: SemaModule.cpp:64
static void checkModuleImportContext(Sema &S, Module *M, SourceLocation ImportLoc, DeclContext *DC, bool FromInclude=false)
Definition: SemaModule.cpp:25
static bool checkExportedDeclContext(Sema &S, DeclContext *DC, SourceLocation BlockStart)
Check that it's valid to export all the declarations in DC.
Definition: SemaModule.cpp:920
static bool isImportingModuleUnitFromSameModule(ASTContext &Ctx, Module *Imported, Module *CurrentModule, Module *&FoundPrimaryModuleInterface)
Helper function for makeTransitiveImportsVisible to decide whether the.
Definition: SemaModule.cpp:85
SourceLocation Loc
Definition: SemaObjC.cpp:759
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:187
void addModuleInitializer(Module *M, Decl *Init)
Add a declaration to the list of declarations that are initialized for a module.
bool isInSameModule(const Module *M1, const Module *M2)
If the two module M1 and M2 are in the same module.
TranslationUnitDecl * getTranslationUnitDecl() const
Definition: ASTContext.h:1101
The result of parsing/analyzing an expression, statement etc.
Definition: Ownership.h:153
DeclContext - This is used only as base class of specific decl types that can act as declaration cont...
Definition: DeclBase.h:1436
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:2090
DeclContext * getLexicalParent()
getLexicalParent - Returns the containing lexical DeclContext.
Definition: DeclBase.h:2106
void addDecl(Decl *D)
Add the declaration D into this context.
Definition: DeclBase.cpp:1766
decl_range decls() const
decls_begin/decls_end - Iterate over the declarations stored in this context.
Definition: DeclBase.h:2350
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
void setInvalidDecl(bool Invalid=true)
setInvalidDecl - Indicates the Decl had a semantic error.
Definition: DeclBase.cpp:154
bool isInvalidDecl() const
Definition: DeclBase.h:595
DeclContext * getLexicalDeclContext()
getLexicalDeclContext - The declaration context where this Decl was lexically declared (LexicalDC).
Definition: DeclBase.h:908
SourceLocation getBeginLoc() const LLVM_READONLY
Definition: DeclBase.h:438
TranslationUnitDecl * getTranslationUnitDecl()
Definition: DeclBase.cpp:508
@ VisibleWhenImported
This declaration has an owning module, and is visible when that module is imported.
@ Unowned
This declaration is not owned by a module.
@ ReachableWhenImported
This declaration has an owning module, and is visible to lookups that occurs within that module.
@ ModulePrivate
This declaration has an owning module, but is only visible to lookups that occur within that module.
@ Visible
This declaration has an owning module, but is globally visible (typically because its owning module i...
void setModuleOwnershipKind(ModuleOwnershipKind MOK)
Set whether this declaration is hidden from name lookup.
Definition: DeclBase.h:871
Represents a standard C++ module export declaration.
Definition: Decl.h:4863
static ExportDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation ExportLoc)
Definition: Decl.cpp:5754
An opaque identifier used by SourceManager which refers to a source file (MemoryBuffer) along with it...
static FixItHint CreateInsertion(SourceLocation InsertionLoc, StringRef Code, bool BeforePreviousInsertions=false)
Create a code modification hint that inserts the given code string at a specific location.
Definition: Diagnostic.h:98
One of these records is kept for each identifier that is lexed.
ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const
Determine whether this is a name reserved for the implementation (C99 7.1.3, C++ [lib....
bool isStr(const char(&Str)[StrLen]) const
Return true if this is the identifier for the specified string.
Describes a module import declaration, which makes the contents of the named module visible in the cu...
Definition: Decl.h:4784
static ImportDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef< SourceLocation > IdentifierLocs)
Create a new module import declaration.
Definition: Decl.cpp:5708
static ImportDecl * CreateImplicit(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, SourceLocation EndLoc)
Create a new module import declaration for an implicitly-generated import.
Definition: Decl.cpp:5716
@ CMK_None
Not compiling a module interface at all.
Definition: LangOptions.h:99
@ CMK_HeaderUnit
Compiling a module header unit.
Definition: LangOptions.h:105
@ CMK_ModuleMap
Compiling a module from a module map.
Definition: LangOptions.h:102
@ CMK_ModuleInterface
Compiling a C++ modules interface unit.
Definition: LangOptions.h:108
Keeps track of the various options that can be enabled, which controls the dialect of C or C++ that i...
Definition: LangOptions.h:480
Module * createGlobalModuleFragmentForModuleUnit(SourceLocation Loc, Module *Parent=nullptr)
Create a global module fragment for a C++ module unit.
Definition: ModuleMap.cpp:871
Module * createImplicitGlobalModuleFragmentForModuleUnit(SourceLocation Loc, Module *Parent)
Definition: ModuleMap.cpp:884
Describes a module or submodule.
Definition: Module.h:105
bool isForBuilding(const LangOptions &LangOpts) const
Determine whether this module can be built in this compilation.
Definition: Module.cpp:160
bool isInterfaceOrPartition() const
Definition: Module.h:615
bool isModulePartitionImplementation() const
Is this a module partition implementation unit.
Definition: Module.h:603
@ AllVisible
All of the names in this module are visible.
Definition: Module.h:391
Module * Parent
The parent of this module.
Definition: Module.h:154
ModuleKind Kind
The kind of this module.
Definition: Module.h:150
llvm::SmallSetVector< Module *, 2 > Imports
The set of modules imported by this module, and on which this module depends.
Definition: Module.h:402
unsigned IsExternC
Whether this is an 'extern "C"' module (which implicitly puts all headers in it within an 'extern "C"...
Definition: Module.h:339
StringRef getPrimaryModuleInterfaceName() const
Get the primary module interface name from a partition.
Definition: Module.h:631
bool isModulePartition() const
Is this a module partition.
Definition: Module.h:597
bool isHeaderUnit() const
Is this module a header unit.
Definition: Module.h:613
@ ModuleImplementationUnit
This is a C++20 module implementation unit.
Definition: Module.h:128
@ ModuleMapModule
This is a module that was defined by a module map and built out of header files.
Definition: Module.h:119
@ ImplicitGlobalModuleFragment
This is an implicit fragment of the global module which contains only language linkage declarations (...
Definition: Module.h:146
@ ModulePartitionInterface
This is a C++20 module partition interface.
Definition: Module.h:131
@ ModuleInterfaceUnit
This is a C++20 module interface unit.
Definition: Module.h:125
@ ModuleHeaderUnit
This is a C++20 header unit.
Definition: Module.h:122
@ ModulePartitionImplementation
This is a C++20 module partition implementation.
Definition: Module.h:134
@ PrivateModuleFragment
This is the private module fragment within some C++ module.
Definition: Module.h:141
@ ExplicitGlobalModuleFragment
This is the explicit Global Module Fragment of a modular TU.
Definition: Module.h:138
std::string getFullModuleName(bool AllowStringLiterals=false) const
Retrieve the full name of this module, including the path from its top-level module.
Definition: Module.cpp:244
bool isNamedModule() const
Does this Module is a named module of a standard named module?
Definition: Module.h:185
Module(StringRef Name, SourceLocation DefinitionLoc, Module *Parent, bool IsFramework, bool IsExplicit, unsigned VisibilityID)
Construct a new module or submodule.
Definition: Module.cpp:37
This represents a decl that may have a name.
Definition: Decl.h:249
NamedDecl * getUnderlyingDecl()
Looks through UsingDecls and ObjCCompatibleAliasDecls for the underlying named decl.
Definition: Decl.h:463
Linkage getFormalLinkage() const
Get the linkage from a semantic point of view.
Definition: Decl.cpp:1200
Wrapper for void* pointer.
Definition: Ownership.h:50
Scope - A scope is a transient data structure that is used while parsing the program.
Definition: Scope.h:41
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint=false)
Emit a diagnostic.
Definition: SemaBase.cpp:64
Sema - This implements semantic analysis and AST building for C.
Definition: Sema.h:493
void ActOnAnnotModuleBegin(SourceLocation DirectiveLoc, Module *Mod)
The parsed has entered a submodule.
Definition: SemaModule.cpp:761
void ActOnAnnotModuleInclude(SourceLocation DirectiveLoc, Module *Mod)
The parser has processed a module import translated from a #include or similar preprocessing directiv...
Definition: SemaModule.cpp:722
ModuleDeclKind
Definition: Sema.h:9651
DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc, ModuleDeclKind MDK, ModuleIdPath Path, ModuleIdPath Partition, ModuleImportState &ImportState)
The parser has processed a module-declaration that begins the definition of a module interface or imp...
Definition: SemaModule.cpp:259
void ActOnAnnotModuleEnd(SourceLocation DirectiveLoc, Module *Mod)
The parser has left a submodule.
Definition: SemaModule.cpp:785
DeclResult ActOnModuleImport(SourceLocation StartLoc, SourceLocation ExportLoc, SourceLocation ImportLoc, ModuleIdPath Path, bool IsPartition=false)
The parser has processed a module import declaration.
Definition: SemaModule.cpp:574
Decl * ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc, SourceLocation LBraceLoc)
We have parsed the start of an export declaration, including the '{' (if present).
Definition: SemaModule.cpp:844
const LangOptions & getLangOpts() const
Definition: Sema.h:553
DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc)
The parser has processed a global-module-fragment declaration that begins the definition of the globa...
Definition: SemaModule.cpp:163
DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc, SourceLocation PrivateLoc)
The parser has processed a private-module-fragment declaration that begins the definition of the priv...
Definition: SemaModule.cpp:512
SourceManager & getSourceManager() const
Definition: Sema.h:558
void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod)
Definition: SemaModule.cpp:727
bool isModuleVisible(const Module *M, bool ModulePrivate=false)
ModuleImportState
An enumeration to represent the transition of states in parsing module fragments and imports.
Definition: Sema.h:9661
Decl * ActOnFinishExportDecl(Scope *S, Decl *ExportDecl, SourceLocation RBraceLoc)
Complete the definition of an export declaration.
Definition: SemaModule.cpp:993
void createImplicitModuleImportForErrorRecovery(SourceLocation Loc, Module *Mod)
Create an implicit import of the given module at the given source location, for error recovery,...
Definition: SemaModule.cpp:825
Encodes a location in the source.
bool isValid() const
Return true if this is a valid SourceLocation object.
bool isInSystemHeader(SourceLocation Loc) const
Returns if a SourceLocation is in a system header.
A trivial tuple used to represent a source range.
The top declaration context.
Definition: Decl.h:84
A set of visible modules.
Definition: Module.h:811
bool isVisible(const Module *M) const
Determine whether a module is visible.
Definition: Module.h:835
void setVisible(Module *M, SourceLocation Loc, VisibleCallback Vis=[](Module *) {}, ConflictCallback Cb=[](ArrayRef< Module * >, Module *, StringRef) {})
Make a specific module visible.
Definition: Module.cpp:681
The JSON file list parser is used to communicate input to InstallAPI.
ArrayRef< std::pair< IdentifierInfo *, SourceLocation > > ModuleIdPath
A sequence of identifier/location pairs used to describe a particular module or submodule,...
Definition: ModuleLoader.h:32
Linkage
Describes the different kinds of linkage (C++ [basic.link], C99 6.2.2) that an entity may have.
Definition: Linkage.h:24
@ Internal
Internal linkage, which indicates that the entity can be referred to from within the translation unit...
@ Module
Module linkage, which indicates that the entity can be referred to from other translation units withi...
LLVM_READONLY bool isDigit(unsigned char c)
Return true if this character is an ASCII digit: [0-9].
Definition: CharInfo.h:114
@ TU_ClangModule
The translation unit is a clang module.
Definition: LangOptions.h:1085
@ Interface
The "__interface" keyword introduces the elaborated-type-specifier.
#define bool
Definition: stdbool.h:24