clang  19.0.0git
ExprEngineCXX.cpp
Go to the documentation of this file.
1 //===- ExprEngineCXX.cpp - ExprEngine support for C++ -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the C++ expression evaluation engine.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/DeclCXX.h"
14 #include "clang/AST/ParentMap.h"
15 #include "clang/AST/StmtCXX.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/Sequence.h"
25 #include <optional>
26 
27 using namespace clang;
28 using namespace ento;
29 
31  ExplodedNode *Pred,
32  ExplodedNodeSet &Dst) {
33  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
34  const Expr *tempExpr = ME->getSubExpr()->IgnoreParens();
35  ProgramStateRef state = Pred->getState();
36  const LocationContext *LCtx = Pred->getLocationContext();
37 
38  state = createTemporaryRegionIfNeeded(state, LCtx, tempExpr, ME);
39  Bldr.generateNode(ME, Pred, state);
40 }
41 
42 // FIXME: This is the sort of code that should eventually live in a Core
43 // checker rather than as a special case in ExprEngine.
44 void ExprEngine::performTrivialCopy(NodeBuilder &Bldr, ExplodedNode *Pred,
45  const CallEvent &Call) {
46  SVal ThisVal;
47  bool AlwaysReturnsLValue;
48  const CXXRecordDecl *ThisRD = nullptr;
49  if (const CXXConstructorCall *Ctor = dyn_cast<CXXConstructorCall>(&Call)) {
50  assert(Ctor->getDecl()->isTrivial());
51  assert(Ctor->getDecl()->isCopyOrMoveConstructor());
52  ThisVal = Ctor->getCXXThisVal();
53  ThisRD = Ctor->getDecl()->getParent();
54  AlwaysReturnsLValue = false;
55  } else {
56  assert(cast<CXXMethodDecl>(Call.getDecl())->isTrivial());
57  assert(cast<CXXMethodDecl>(Call.getDecl())->getOverloadedOperator() ==
58  OO_Equal);
59  ThisVal = cast<CXXInstanceCall>(Call).getCXXThisVal();
60  ThisRD = cast<CXXMethodDecl>(Call.getDecl())->getParent();
61  AlwaysReturnsLValue = true;
62  }
63 
64  const LocationContext *LCtx = Pred->getLocationContext();
65  const Expr *CallExpr = Call.getOriginExpr();
66 
67  ExplodedNodeSet Dst;
68  Bldr.takeNodes(Pred);
69 
70  assert(ThisRD);
71  if (!ThisRD->isEmpty()) {
72  // Load the source value only for non-empty classes.
73  // Otherwise it'd retrieve an UnknownVal
74  // and bind it and RegionStore would think that the actual value
75  // in this region at this offset is unknown.
76  SVal V = Call.getArgSVal(0);
77 
78  // If the value being copied is not unknown, load from its location to get
79  // an aggregate rvalue.
80  if (std::optional<Loc> L = V.getAs<Loc>())
81  V = Pred->getState()->getSVal(*L);
82  else
83  assert(V.isUnknownOrUndef());
84  evalBind(Dst, CallExpr, Pred, ThisVal, V, true);
85  } else {
86  Dst.Add(Pred);
87  }
88 
89  PostStmt PS(CallExpr, LCtx);
90  for (ExplodedNode *N : Dst) {
91  ProgramStateRef State = N->getState();
92  if (AlwaysReturnsLValue)
93  State = State->BindExpr(CallExpr, LCtx, ThisVal);
94  else
95  State = bindReturnValue(Call, LCtx, State);
96  Bldr.generateNode(PS, State, N);
97  }
98 }
99 
100 SVal ExprEngine::makeElementRegion(ProgramStateRef State, SVal LValue,
101  QualType &Ty, bool &IsArray, unsigned Idx) {
102  SValBuilder &SVB = State->getStateManager().getSValBuilder();
103  ASTContext &Ctx = SVB.getContext();
104 
105  if (const ArrayType *AT = Ctx.getAsArrayType(Ty)) {
106  while (AT) {
107  Ty = AT->getElementType();
108  AT = dyn_cast<ArrayType>(AT->getElementType());
109  }
110  LValue = State->getLValue(Ty, SVB.makeArrayIndex(Idx), LValue);
111  IsArray = true;
112  }
113 
114  return LValue;
115 }
116 
117 // In case when the prvalue is returned from the function (kind is one of
118 // SimpleReturnedValueKind, CXX17ElidedCopyReturnedValueKind), then
119 // it's materialization happens in context of the caller.
120 // We pass BldrCtx explicitly, as currBldrCtx always refers to callee's context.
122  const Expr *E, ProgramStateRef State, const NodeBuilderContext *BldrCtx,
123  const LocationContext *LCtx, const ConstructionContext *CC,
124  EvalCallOptions &CallOpts, unsigned Idx) {
125 
126  SValBuilder &SVB = getSValBuilder();
127  MemRegionManager &MRMgr = SVB.getRegionManager();
128  ASTContext &ACtx = SVB.getContext();
129 
130  // Compute the target region by exploring the construction context.
131  if (CC) {
132  switch (CC->getKind()) {
135  const auto *DSCC = cast<VariableConstructionContext>(CC);
136  const auto *DS = DSCC->getDeclStmt();
137  const auto *Var = cast<VarDecl>(DS->getSingleDecl());
138  QualType Ty = Var->getType();
139  return makeElementRegion(State, State->getLValue(Var, LCtx), Ty,
140  CallOpts.IsArrayCtorOrDtor, Idx);
141  }
144  const auto *ICC = cast<ConstructorInitializerConstructionContext>(CC);
145  const auto *Init = ICC->getCXXCtorInitializer();
146  const CXXMethodDecl *CurCtor = cast<CXXMethodDecl>(LCtx->getDecl());
147  Loc ThisPtr = SVB.getCXXThis(CurCtor, LCtx->getStackFrame());
148  SVal ThisVal = State->getSVal(ThisPtr);
149  if (Init->isBaseInitializer()) {
150  const auto *ThisReg = cast<SubRegion>(ThisVal.getAsRegion());
151  const CXXRecordDecl *BaseClass =
152  Init->getBaseClass()->getAsCXXRecordDecl();
153  const auto *BaseReg =
154  MRMgr.getCXXBaseObjectRegion(BaseClass, ThisReg,
155  Init->isBaseVirtual());
156  return SVB.makeLoc(BaseReg);
157  }
158  if (Init->isDelegatingInitializer())
159  return ThisVal;
160 
161  const ValueDecl *Field;
162  SVal FieldVal;
163  if (Init->isIndirectMemberInitializer()) {
164  Field = Init->getIndirectMember();
165  FieldVal = State->getLValue(Init->getIndirectMember(), ThisVal);
166  } else {
167  Field = Init->getMember();
168  FieldVal = State->getLValue(Init->getMember(), ThisVal);
169  }
170 
171  QualType Ty = Field->getType();
172  return makeElementRegion(State, FieldVal, Ty, CallOpts.IsArrayCtorOrDtor,
173  Idx);
174  }
176  if (AMgr.getAnalyzerOptions().MayInlineCXXAllocator) {
177  const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
178  const auto *NE = NECC->getCXXNewExpr();
180  if (const SubRegion *MR =
181  dyn_cast_or_null<SubRegion>(V.getAsRegion())) {
182  if (NE->isArray()) {
183  CallOpts.IsArrayCtorOrDtor = true;
184 
185  auto Ty = NE->getType()->getPointeeType();
186  while (const auto *AT = getContext().getAsArrayType(Ty))
187  Ty = AT->getElementType();
188 
189  auto R = MRMgr.getElementRegion(Ty, svalBuilder.makeArrayIndex(Idx),
190  MR, SVB.getContext());
191 
192  return loc::MemRegionVal(R);
193  }
194  return V;
195  }
196  // TODO: Detect when the allocator returns a null pointer.
197  // Constructor shall not be called in this case.
198  }
199  break;
200  }
203  // The temporary is to be managed by the parent stack frame.
204  // So build it in the parent stack frame if we're not in the
205  // top frame of the analysis.
206  const StackFrameContext *SFC = LCtx->getStackFrame();
207  if (const LocationContext *CallerLCtx = SFC->getParent()) {
208  auto RTC = (*SFC->getCallSiteBlock())[SFC->getIndex()]
209  .getAs<CFGCXXRecordTypedCall>();
210  if (!RTC) {
211  // We were unable to find the correct construction context for the
212  // call in the parent stack frame. This is equivalent to not being
213  // able to find construction context at all.
214  break;
215  }
216  if (isa<BlockInvocationContext>(CallerLCtx)) {
217  // Unwrap block invocation contexts. They're mostly part of
218  // the current stack frame.
219  CallerLCtx = CallerLCtx->getParent();
220  assert(!isa<BlockInvocationContext>(CallerLCtx));
221  }
222 
223  NodeBuilderContext CallerBldrCtx(getCoreEngine(),
224  SFC->getCallSiteBlock(), CallerLCtx);
226  cast<Expr>(SFC->getCallSite()), State, &CallerBldrCtx, CallerLCtx,
227  RTC->getConstructionContext(), CallOpts);
228  } else {
229  // We are on the top frame of the analysis. We do not know where is the
230  // object returned to. Conjure a symbolic region for the return value.
231  // TODO: We probably need a new MemRegion kind to represent the storage
232  // of that SymbolicRegion, so that we could produce a fancy symbol
233  // instead of an anonymous conjured symbol.
234  // TODO: Do we need to track the region to avoid having it dead
235  // too early? It does die too early, at least in C++17, but because
236  // putting anything into a SymbolicRegion causes an immediate escape,
237  // it doesn't cause any leak false positives.
238  const auto *RCC = cast<ReturnedValueConstructionContext>(CC);
239  // Make sure that this doesn't coincide with any other symbol
240  // conjured for the returned expression.
241  static const int TopLevelSymRegionTag = 0;
242  const Expr *RetE = RCC->getReturnStmt()->getRetValue();
243  assert(RetE && "Void returns should not have a construction context");
244  QualType ReturnTy = RetE->getType();
245  QualType RegionTy = ACtx.getPointerType(ReturnTy);
246  return SVB.conjureSymbolVal(&TopLevelSymRegionTag, RetE, SFC, RegionTy,
247  currBldrCtx->blockCount());
248  }
249  llvm_unreachable("Unhandled return value construction context!");
250  }
252  assert(AMgr.getAnalyzerOptions().ShouldElideConstructors);
253  const auto *TCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
254 
255  // Support pre-C++17 copy elision. We'll have the elidable copy
256  // constructor in the AST and in the CFG, but we'll skip it
257  // and construct directly into the final object. This call
258  // also sets the CallOpts flags for us.
259  // If the elided copy/move constructor is not supported, there's still
260  // benefit in trying to model the non-elided constructor.
261  // Stash our state before trying to elide, as it'll get overwritten.
262  ProgramStateRef PreElideState = State;
263  EvalCallOptions PreElideCallOpts = CallOpts;
264 
266  TCC->getConstructorAfterElision(), State, BldrCtx, LCtx,
267  TCC->getConstructionContextAfterElision(), CallOpts);
268 
269  // FIXME: This definition of "copy elision has not failed" is unreliable.
270  // It doesn't indicate that the constructor will actually be inlined
271  // later; this is still up to evalCall() to decide.
273  return V;
274 
275  // Copy elision failed. Revert the changes and proceed as if we have
276  // a simple temporary.
277  CallOpts = PreElideCallOpts;
278  CallOpts.IsElidableCtorThatHasNotBeenElided = true;
279  [[fallthrough]];
280  }
282  const auto *TCC = cast<TemporaryObjectConstructionContext>(CC);
283  const MaterializeTemporaryExpr *MTE = TCC->getMaterializedTemporaryExpr();
284 
285  CallOpts.IsTemporaryCtorOrDtor = true;
286  if (MTE) {
287  if (const ValueDecl *VD = MTE->getExtendingDecl()) {
289  assert(SD != SD_FullExpression);
290  if (!VD->getType()->isReferenceType()) {
291  // We're lifetime-extended by a surrounding aggregate.
292  // Automatic destructors aren't quite working in this case
293  // on the CFG side. We should warn the caller about that.
294  // FIXME: Is there a better way to retrieve this information from
295  // the MaterializeTemporaryExpr?
297  }
298 
299  if (SD == SD_Static || SD == SD_Thread)
300  return loc::MemRegionVal(
302 
303  return loc::MemRegionVal(
304  MRMgr.getCXXLifetimeExtendedObjectRegion(E, VD, LCtx));
305  }
306  assert(MTE->getStorageDuration() == SD_FullExpression);
307  }
308 
309  return loc::MemRegionVal(MRMgr.getCXXTempObjectRegion(E, LCtx));
310  }
312  CallOpts.IsTemporaryCtorOrDtor = true;
313 
314  const auto *LCC = cast<LambdaCaptureConstructionContext>(CC);
315 
317  MRMgr.getCXXTempObjectRegion(LCC->getInitializer(), LCtx));
318 
319  const auto *CE = dyn_cast_or_null<CXXConstructExpr>(E);
320  if (getIndexOfElementToConstruct(State, CE, LCtx)) {
321  CallOpts.IsArrayCtorOrDtor = true;
322  Base = State->getLValue(E->getType(), svalBuilder.makeArrayIndex(Idx),
323  Base);
324  }
325 
326  return Base;
327  }
329  // Arguments are technically temporaries.
330  CallOpts.IsTemporaryCtorOrDtor = true;
331 
332  const auto *ACC = cast<ArgumentConstructionContext>(CC);
333  const Expr *E = ACC->getCallLikeExpr();
334  unsigned Idx = ACC->getIndex();
335 
337  auto getArgLoc = [&](CallEventRef<> Caller) -> std::optional<SVal> {
338  const LocationContext *FutureSFC =
339  Caller->getCalleeStackFrame(BldrCtx->blockCount());
340  // Return early if we are unable to reliably foresee
341  // the future stack frame.
342  if (!FutureSFC)
343  return std::nullopt;
344 
345  // This should be equivalent to Caller->getDecl() for now, but
346  // FutureSFC->getDecl() is likely to support better stuff (like
347  // virtual functions) earlier.
348  const Decl *CalleeD = FutureSFC->getDecl();
349 
350  // FIXME: Support for variadic arguments is not implemented here yet.
351  if (CallEvent::isVariadic(CalleeD))
352  return std::nullopt;
353 
354  // Operator arguments do not correspond to operator parameters
355  // because this-argument is implemented as a normal argument in
356  // operator call expressions but not in operator declarations.
357  const TypedValueRegion *TVR = Caller->getParameterLocation(
358  *Caller->getAdjustedParameterIndex(Idx), BldrCtx->blockCount());
359  if (!TVR)
360  return std::nullopt;
361 
362  return loc::MemRegionVal(TVR);
363  };
364 
365  if (const auto *CE = dyn_cast<CallExpr>(E)) {
366  CallEventRef<> Caller =
367  CEMgr.getSimpleCall(CE, State, LCtx, getCFGElementRef());
368  if (std::optional<SVal> V = getArgLoc(Caller))
369  return *V;
370  else
371  break;
372  } else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) {
373  // Don't bother figuring out the target region for the future
374  // constructor because we won't need it.
375  CallEventRef<> Caller = CEMgr.getCXXConstructorCall(
376  CCE, /*Target=*/nullptr, State, LCtx, getCFGElementRef());
377  if (std::optional<SVal> V = getArgLoc(Caller))
378  return *V;
379  else
380  break;
381  } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(E)) {
382  CallEventRef<> Caller =
383  CEMgr.getObjCMethodCall(ME, State, LCtx, getCFGElementRef());
384  if (std::optional<SVal> V = getArgLoc(Caller))
385  return *V;
386  else
387  break;
388  }
389  }
390  } // switch (CC->getKind())
391  }
392 
393  // If we couldn't find an existing region to construct into, assume we're
394  // constructing a temporary. Notify the caller of our failure.
396  return loc::MemRegionVal(MRMgr.getCXXTempObjectRegion(E, LCtx));
397 }
398 
400  SVal V, const Expr *E, ProgramStateRef State, const LocationContext *LCtx,
401  const ConstructionContext *CC, const EvalCallOptions &CallOpts) {
403  // Sounds like we failed to find the target region and therefore
404  // copy elision failed. There's nothing we can do about it here.
405  return State;
406  }
407 
408  // See if we're constructing an existing region by looking at the
409  // current construction context.
410  assert(CC && "Computed target region without construction context?");
411  switch (CC->getKind()) {
414  const auto *DSCC = cast<VariableConstructionContext>(CC);
415  return addObjectUnderConstruction(State, DSCC->getDeclStmt(), LCtx, V);
416  }
419  const auto *ICC = cast<ConstructorInitializerConstructionContext>(CC);
420  const auto *Init = ICC->getCXXCtorInitializer();
421  // Base and delegating initializers handled above
422  assert(Init->isAnyMemberInitializer() &&
423  "Base and delegating initializers should have been handled by"
424  "computeObjectUnderConstruction()");
425  return addObjectUnderConstruction(State, Init, LCtx, V);
426  }
428  return State;
429  }
432  const StackFrameContext *SFC = LCtx->getStackFrame();
433  const LocationContext *CallerLCtx = SFC->getParent();
434  if (!CallerLCtx) {
435  // No extra work is necessary in top frame.
436  return State;
437  }
438 
439  auto RTC = (*SFC->getCallSiteBlock())[SFC->getIndex()]
440  .getAs<CFGCXXRecordTypedCall>();
441  assert(RTC && "Could not have had a target region without it");
442  if (isa<BlockInvocationContext>(CallerLCtx)) {
443  // Unwrap block invocation contexts. They're mostly part of
444  // the current stack frame.
445  CallerLCtx = CallerLCtx->getParent();
446  assert(!isa<BlockInvocationContext>(CallerLCtx));
447  }
448 
450  cast<Expr>(SFC->getCallSite()), State, CallerLCtx,
451  RTC->getConstructionContext(), CallOpts);
452  }
454  assert(AMgr.getAnalyzerOptions().ShouldElideConstructors);
455  if (!CallOpts.IsElidableCtorThatHasNotBeenElided) {
456  const auto *TCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
458  V, TCC->getConstructorAfterElision(), State, LCtx,
459  TCC->getConstructionContextAfterElision(), CallOpts);
460 
461  // Remember that we've elided the constructor.
462  State = addObjectUnderConstruction(
463  State, TCC->getConstructorAfterElision(), LCtx, V);
464 
465  // Remember that we've elided the destructor.
466  if (const auto *BTE = TCC->getCXXBindTemporaryExpr())
467  State = elideDestructor(State, BTE, LCtx);
468 
469  // Instead of materialization, shamelessly return
470  // the final object destination.
471  if (const auto *MTE = TCC->getMaterializedTemporaryExpr())
472  State = addObjectUnderConstruction(State, MTE, LCtx, V);
473 
474  return State;
475  }
476  // If we decided not to elide the constructor, proceed as if
477  // it's a simple temporary.
478  [[fallthrough]];
479  }
481  const auto *TCC = cast<TemporaryObjectConstructionContext>(CC);
482  if (const auto *BTE = TCC->getCXXBindTemporaryExpr())
483  State = addObjectUnderConstruction(State, BTE, LCtx, V);
484 
485  if (const auto *MTE = TCC->getMaterializedTemporaryExpr())
486  State = addObjectUnderConstruction(State, MTE, LCtx, V);
487 
488  return State;
489  }
491  const auto *LCC = cast<LambdaCaptureConstructionContext>(CC);
492 
493  // If we capture and array, we want to store the super region, not a
494  // sub-region.
495  if (const auto *EL = dyn_cast_or_null<ElementRegion>(V.getAsRegion()))
496  V = loc::MemRegionVal(EL->getSuperRegion());
497 
498  return addObjectUnderConstruction(
499  State, {LCC->getLambdaExpr(), LCC->getIndex()}, LCtx, V);
500  }
502  const auto *ACC = cast<ArgumentConstructionContext>(CC);
503  if (const auto *BTE = ACC->getCXXBindTemporaryExpr())
504  State = addObjectUnderConstruction(State, BTE, LCtx, V);
505 
506  return addObjectUnderConstruction(
507  State, {ACC->getCallLikeExpr(), ACC->getIndex()}, LCtx, V);
508  }
509  }
510  llvm_unreachable("Unhandled construction context!");
511 }
512 
513 static ProgramStateRef
515  const ArrayInitLoopExpr *AILE,
516  const LocationContext *LCtx, SVal Idx) {
517  // The ctor in this case is guaranteed to be a copy ctor, otherwise we hit a
518  // compile time error.
519  //
520  // -ArrayInitLoopExpr <-- we're here
521  // |-OpaqueValueExpr
522  // | `-DeclRefExpr <-- match this
523  // `-CXXConstructExpr
524  // `-ImplicitCastExpr
525  // `-ArraySubscriptExpr
526  // |-ImplicitCastExpr
527  // | `-OpaqueValueExpr
528  // | `-DeclRefExpr
529  // `-ArrayInitIndexExpr
530  //
531  // The resulting expression might look like the one below in an implicit
532  // copy/move ctor.
533  //
534  // ArrayInitLoopExpr <-- we're here
535  // |-OpaqueValueExpr
536  // | `-MemberExpr <-- match this
537  // | (`-CXXStaticCastExpr) <-- move ctor only
538  // | `-DeclRefExpr
539  // `-CXXConstructExpr
540  // `-ArraySubscriptExpr
541  // |-ImplicitCastExpr
542  // | `-OpaqueValueExpr
543  // | `-MemberExpr
544  // | `-DeclRefExpr
545  // `-ArrayInitIndexExpr
546  //
547  // The resulting expression for a multidimensional array.
548  // ArrayInitLoopExpr <-- we're here
549  // |-OpaqueValueExpr
550  // | `-DeclRefExpr <-- match this
551  // `-ArrayInitLoopExpr
552  // |-OpaqueValueExpr
553  // | `-ArraySubscriptExpr
554  // | |-ImplicitCastExpr
555  // | | `-OpaqueValueExpr
556  // | | `-DeclRefExpr
557  // | `-ArrayInitIndexExpr
558  // `-CXXConstructExpr <-- extract this
559  // ` ...
560 
561  const auto *OVESrc = AILE->getCommonExpr()->getSourceExpr();
562 
563  // HACK: There is no way we can put the index of the array element into the
564  // CFG unless we unroll the loop, so we manually select and bind the required
565  // parameter to the environment.
566  const auto *CE =
567  cast<CXXConstructExpr>(extractElementInitializerFromNestedAILE(AILE));
568 
569  SVal Base = UnknownVal();
570  if (const auto *ME = dyn_cast<MemberExpr>(OVESrc))
571  Base = State->getSVal(ME, LCtx);
572  else if (const auto *DRE = dyn_cast<DeclRefExpr>(OVESrc))
573  Base = State->getLValue(cast<VarDecl>(DRE->getDecl()), LCtx);
574  else
575  llvm_unreachable("ArrayInitLoopExpr contains unexpected source expression");
576 
577  SVal NthElem = State->getLValue(CE->getType(), Idx, Base);
578 
579  return State->BindExpr(CE->getArg(0), LCtx, NthElem);
580 }
581 
582 void ExprEngine::handleConstructor(const Expr *E,
583  ExplodedNode *Pred,
584  ExplodedNodeSet &destNodes) {
585  const auto *CE = dyn_cast<CXXConstructExpr>(E);
586  const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(E);
587  assert(CE || CIE);
588 
589  const LocationContext *LCtx = Pred->getLocationContext();
590  ProgramStateRef State = Pred->getState();
591 
592  SVal Target = UnknownVal();
593 
594  if (CE) {
595  if (std::optional<SVal> ElidedTarget =
596  getObjectUnderConstruction(State, CE, LCtx)) {
597  // We've previously modeled an elidable constructor by pretending that
598  // it in fact constructs into the correct target. This constructor can
599  // therefore be skipped.
600  Target = *ElidedTarget;
601  StmtNodeBuilder Bldr(Pred, destNodes, *currBldrCtx);
602  State = finishObjectConstruction(State, CE, LCtx);
603  if (auto L = Target.getAs<Loc>())
604  State = State->BindExpr(CE, LCtx, State->getSVal(*L, CE->getType()));
605  Bldr.generateNode(CE, Pred, State);
606  return;
607  }
608  }
609 
610  EvalCallOptions CallOpts;
612  assert(C || getCurrentCFGElement().getAs<CFGStmt>());
613  const ConstructionContext *CC = C ? C->getConstructionContext() : nullptr;
614 
615  const CXXConstructionKind CK =
616  CE ? CE->getConstructionKind() : CIE->getConstructionKind();
617  switch (CK) {
619  // Inherited constructors are always base class constructors.
620  assert(CE && !CIE && "A complete constructor is inherited?!");
621 
622  // If the ctor is part of an ArrayInitLoopExpr, we want to handle it
623  // differently.
624  auto *AILE = CC ? CC->getArrayInitLoop() : nullptr;
625 
626  unsigned Idx = 0;
627  if (CE->getType()->isArrayType() || AILE) {
628 
629  auto isZeroSizeArray = [&] {
630  uint64_t Size = 1;
631 
632  if (const auto *CAT = dyn_cast<ConstantArrayType>(CE->getType()))
634  else if (AILE)
636 
637  return Size == 0;
638  };
639 
640  // No element construction will happen in a 0 size array.
641  if (isZeroSizeArray()) {
642  StmtNodeBuilder Bldr(Pred, destNodes, *currBldrCtx);
643  static SimpleProgramPointTag T{"ExprEngine",
644  "Skipping 0 size array construction"};
645  Bldr.generateNode(CE, Pred, State, &T);
646  return;
647  }
648 
649  Idx = getIndexOfElementToConstruct(State, CE, LCtx).value_or(0u);
650  State = setIndexOfElementToConstruct(State, CE, LCtx, Idx + 1);
651  }
652 
653  if (AILE) {
654  // Only set this once even though we loop through it multiple times.
655  if (!getPendingInitLoop(State, CE, LCtx))
656  State = setPendingInitLoop(
657  State, CE, LCtx,
658  getContext().getArrayInitLoopExprElementCount(AILE));
659 
661  State, AILE, LCtx, svalBuilder.makeArrayIndex(Idx));
662  }
663 
664  // The target region is found from construction context.
666  CE, State, currBldrCtx, LCtx, CC, CallOpts, Idx);
667  break;
668  }
670  // Make sure we are not calling virtual base class initializers twice.
671  // Only the most-derived object should initialize virtual base classes.
672  const auto *OuterCtor = dyn_cast_or_null<CXXConstructExpr>(
673  LCtx->getStackFrame()->getCallSite());
674  assert(
675  (!OuterCtor ||
676  OuterCtor->getConstructionKind() == CXXConstructionKind::Complete ||
677  OuterCtor->getConstructionKind() == CXXConstructionKind::Delegating) &&
678  ("This virtual base should have already been initialized by "
679  "the most derived class!"));
680  (void)OuterCtor;
681  [[fallthrough]];
682  }
684  // In C++17, classes with non-virtual bases may be aggregates, so they would
685  // be initialized as aggregates without a constructor call, so we may have
686  // a base class constructed directly into an initializer list without
687  // having the derived-class constructor call on the previous stack frame.
688  // Initializer lists may be nested into more initializer lists that
689  // correspond to surrounding aggregate initializations.
690  // FIXME: For now this code essentially bails out. We need to find the
691  // correct target region and set it.
692  // FIXME: Instead of relying on the ParentMap, we should have the
693  // trigger-statement (InitListExpr in this case) passed down from CFG or
694  // otherwise always available during construction.
695  if (isa_and_nonnull<InitListExpr>(LCtx->getParentMap().getParent(E))) {
699  break;
700  }
701  [[fallthrough]];
703  const CXXMethodDecl *CurCtor = cast<CXXMethodDecl>(LCtx->getDecl());
704  Loc ThisPtr = getSValBuilder().getCXXThis(CurCtor,
705  LCtx->getStackFrame());
706  SVal ThisVal = State->getSVal(ThisPtr);
707 
709  Target = ThisVal;
710  } else {
711  // Cast to the base type.
712  bool IsVirtual = (CK == CXXConstructionKind::VirtualBase);
713  SVal BaseVal =
714  getStoreManager().evalDerivedToBase(ThisVal, E->getType(), IsVirtual);
715  Target = BaseVal;
716  }
717  break;
718  }
719  }
720 
721  if (State != Pred->getState()) {
722  static SimpleProgramPointTag T("ExprEngine",
723  "Prepare for object construction");
724  ExplodedNodeSet DstPrepare;
725  StmtNodeBuilder BldrPrepare(Pred, DstPrepare, *currBldrCtx);
726  BldrPrepare.generateNode(E, Pred, State, &T, ProgramPoint::PreStmtKind);
727  assert(DstPrepare.size() <= 1);
728  if (DstPrepare.size() == 0)
729  return;
730  Pred = *BldrPrepare.begin();
731  }
732 
733  const MemRegion *TargetRegion = Target.getAsRegion();
737  CIE, TargetRegion, State, LCtx, getCFGElementRef())
739  CE, TargetRegion, State, LCtx, getCFGElementRef());
740 
741  ExplodedNodeSet DstPreVisit;
742  getCheckerManager().runCheckersForPreStmt(DstPreVisit, Pred, E, *this);
743 
744  ExplodedNodeSet PreInitialized;
745  if (CE) {
746  // FIXME: Is it possible and/or useful to do this before PreStmt?
747  StmtNodeBuilder Bldr(DstPreVisit, PreInitialized, *currBldrCtx);
748  for (ExplodedNode *N : DstPreVisit) {
749  ProgramStateRef State = N->getState();
750  if (CE->requiresZeroInitialization()) {
751  // FIXME: Once we properly handle constructors in new-expressions, we'll
752  // need to invalidate the region before setting a default value, to make
753  // sure there aren't any lingering bindings around. This probably needs
754  // to happen regardless of whether or not the object is zero-initialized
755  // to handle random fields of a placement-initialized object picking up
756  // old bindings. We might only want to do it when we need to, though.
757  // FIXME: This isn't actually correct for arrays -- we need to zero-
758  // initialize the entire array, not just the first element -- but our
759  // handling of arrays everywhere else is weak as well, so this shouldn't
760  // actually make things worse. Placement new makes this tricky as well,
761  // since it's then possible to be initializing one part of a multi-
762  // dimensional array.
763  State = State->bindDefaultZero(Target, LCtx);
764  }
765 
766  Bldr.generateNode(CE, N, State, /*tag=*/nullptr,
768  }
769  } else {
770  PreInitialized = DstPreVisit;
771  }
772 
773  ExplodedNodeSet DstPreCall;
774  getCheckerManager().runCheckersForPreCall(DstPreCall, PreInitialized,
775  *Call, *this);
776 
777  ExplodedNodeSet DstEvaluated;
778 
779  if (CE && CE->getConstructor()->isTrivial() &&
780  CE->getConstructor()->isCopyOrMoveConstructor() &&
781  !CallOpts.IsArrayCtorOrDtor) {
782  StmtNodeBuilder Bldr(DstPreCall, DstEvaluated, *currBldrCtx);
783  // FIXME: Handle other kinds of trivial constructors as well.
784  for (ExplodedNode *N : DstPreCall)
785  performTrivialCopy(Bldr, N, *Call);
786 
787  } else {
788  for (ExplodedNode *N : DstPreCall)
789  getCheckerManager().runCheckersForEvalCall(DstEvaluated, N, *Call, *this,
790  CallOpts);
791  }
792 
793  // If the CFG was constructed without elements for temporary destructors
794  // and the just-called constructor created a temporary object then
795  // stop exploration if the temporary object has a noreturn constructor.
796  // This can lose coverage because the destructor, if it were present
797  // in the CFG, would be called at the end of the full expression or
798  // later (for life-time extended temporaries) -- but avoids infeasible
799  // paths when no-return temporary destructors are used for assertions.
800  ExplodedNodeSet DstEvaluatedPostProcessed;
801  StmtNodeBuilder Bldr(DstEvaluated, DstEvaluatedPostProcessed, *currBldrCtx);
802  const AnalysisDeclContext *ADC = LCtx->getAnalysisDeclContext();
804  if (llvm::isa_and_nonnull<CXXTempObjectRegion,
805  CXXLifetimeExtendedObjectRegion>(TargetRegion) &&
806  cast<CXXConstructorDecl>(Call->getDecl())
807  ->getParent()
808  ->isAnyDestructorNoReturn()) {
809 
810  // If we've inlined the constructor, then DstEvaluated would be empty.
811  // In this case we still want a sink, which could be implemented
812  // in processCallExit. But we don't have that implemented at the moment,
813  // so if you hit this assertion, see if you can avoid inlining
814  // the respective constructor when analyzer-config cfg-temporary-dtors
815  // is set to false.
816  // Otherwise there's nothing wrong with inlining such constructor.
817  assert(!DstEvaluated.empty() &&
818  "We should not have inlined this constructor!");
819 
820  for (ExplodedNode *N : DstEvaluated) {
821  Bldr.generateSink(E, N, N->getState());
822  }
823 
824  // There is no need to run the PostCall and PostStmt checker
825  // callbacks because we just generated sinks on all nodes in th
826  // frontier.
827  return;
828  }
829  }
830 
831  ExplodedNodeSet DstPostArgumentCleanup;
832  for (ExplodedNode *I : DstEvaluatedPostProcessed)
833  finishArgumentConstruction(DstPostArgumentCleanup, I, *Call);
834 
835  // If there were other constructors called for object-type arguments
836  // of this constructor, clean them up.
837  ExplodedNodeSet DstPostCall;
839  DstPostArgumentCleanup,
840  *Call, *this);
841  getCheckerManager().runCheckersForPostStmt(destNodes, DstPostCall, E, *this);
842 }
843 
845  ExplodedNode *Pred,
846  ExplodedNodeSet &Dst) {
847  handleConstructor(CE, Pred, Dst);
848 }
849 
851  const CXXInheritedCtorInitExpr *CE, ExplodedNode *Pred,
852  ExplodedNodeSet &Dst) {
853  handleConstructor(CE, Pred, Dst);
854 }
855 
857  const MemRegion *Dest,
858  const Stmt *S,
859  bool IsBaseDtor,
860  ExplodedNode *Pred,
861  ExplodedNodeSet &Dst,
862  EvalCallOptions &CallOpts) {
863  assert(S && "A destructor without a trigger!");
864  const LocationContext *LCtx = Pred->getLocationContext();
865  ProgramStateRef State = Pred->getState();
866 
867  const CXXRecordDecl *RecordDecl = ObjectType->getAsCXXRecordDecl();
868  assert(RecordDecl && "Only CXXRecordDecls should have destructors");
869  const CXXDestructorDecl *DtorDecl = RecordDecl->getDestructor();
870  // FIXME: There should always be a Decl, otherwise the destructor call
871  // shouldn't have been added to the CFG in the first place.
872  if (!DtorDecl) {
873  // Skip the invalid destructor. We cannot simply return because
874  // it would interrupt the analysis instead.
875  static SimpleProgramPointTag T("ExprEngine", "SkipInvalidDestructor");
876  // FIXME: PostImplicitCall with a null decl may crash elsewhere anyway.
877  PostImplicitCall PP(/*Decl=*/nullptr, S->getEndLoc(), LCtx,
878  getCFGElementRef(), &T);
879  NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
880  Bldr.generateNode(PP, Pred->getState(), Pred);
881  return;
882  }
883 
884  if (!Dest) {
885  // We're trying to destroy something that is not a region. This may happen
886  // for a variety of reasons (unknown target region, concrete integer instead
887  // of target region, etc.). The current code makes an attempt to recover.
888  // FIXME: We probably don't really need to recover when we're dealing
889  // with concrete integers specifically.
891  if (const Expr *E = dyn_cast_or_null<Expr>(S)) {
892  Dest = MRMgr.getCXXTempObjectRegion(E, Pred->getLocationContext());
893  } else {
894  static SimpleProgramPointTag T("ExprEngine", "SkipInvalidDestructor");
895  NodeBuilder Bldr(Pred, Dst, *currBldrCtx);
896  Bldr.generateSink(Pred->getLocation().withTag(&T),
897  Pred->getState(), Pred);
898  return;
899  }
900  }
901 
904  DtorDecl, S, Dest, IsBaseDtor, State, LCtx, getCFGElementRef());
905 
906  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
907  Call->getSourceRange().getBegin(),
908  "Error evaluating destructor");
909 
910  ExplodedNodeSet DstPreCall;
911  getCheckerManager().runCheckersForPreCall(DstPreCall, Pred,
912  *Call, *this);
913 
914  ExplodedNodeSet DstInvalidated;
915  StmtNodeBuilder Bldr(DstPreCall, DstInvalidated, *currBldrCtx);
916  for (ExplodedNode *N : DstPreCall)
917  defaultEvalCall(Bldr, N, *Call, CallOpts);
918 
919  getCheckerManager().runCheckersForPostCall(Dst, DstInvalidated,
920  *Call, *this);
921 }
922 
924  ExplodedNode *Pred,
925  ExplodedNodeSet &Dst) {
926  ProgramStateRef State = Pred->getState();
927  const LocationContext *LCtx = Pred->getLocationContext();
928  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
929  CNE->getBeginLoc(),
930  "Error evaluating New Allocator Call");
933  CEMgr.getCXXAllocatorCall(CNE, State, LCtx, getCFGElementRef());
934 
935  ExplodedNodeSet DstPreCall;
936  getCheckerManager().runCheckersForPreCall(DstPreCall, Pred,
937  *Call, *this);
938 
939  ExplodedNodeSet DstPostCall;
940  StmtNodeBuilder CallBldr(DstPreCall, DstPostCall, *currBldrCtx);
941  for (ExplodedNode *I : DstPreCall) {
942  // FIXME: Provide evalCall for checkers?
943  defaultEvalCall(CallBldr, I, *Call);
944  }
945  // If the call is inlined, DstPostCall will be empty and we bail out now.
946 
947  // Store return value of operator new() for future use, until the actual
948  // CXXNewExpr gets processed.
949  ExplodedNodeSet DstPostValue;
950  StmtNodeBuilder ValueBldr(DstPostCall, DstPostValue, *currBldrCtx);
951  for (ExplodedNode *I : DstPostCall) {
952  // FIXME: Because CNE serves as the "call site" for the allocator (due to
953  // lack of a better expression in the AST), the conjured return value symbol
954  // is going to be of the same type (C++ object pointer type). Technically
955  // this is not correct because the operator new's prototype always says that
956  // it returns a 'void *'. So we should change the type of the symbol,
957  // and then evaluate the cast over the symbolic pointer from 'void *' to
958  // the object pointer type. But without changing the symbol's type it
959  // is breaking too much to evaluate the no-op symbolic cast over it, so we
960  // skip it for now.
961  ProgramStateRef State = I->getState();
962  SVal RetVal = State->getSVal(CNE, LCtx);
963  // [basic.stc.dynamic.allocation] (on the return value of an allocation
964  // function):
965  // "The order, contiguity, and initial value of storage allocated by
966  // successive calls to an allocation function are unspecified."
967  State = State->bindDefaultInitial(RetVal, UndefinedVal{}, LCtx);
968 
969  // If this allocation function is not declared as non-throwing, failures
970  // /must/ be signalled by exceptions, and thus the return value will never
971  // be NULL. -fno-exceptions does not influence this semantics.
972  // FIXME: GCC has a -fcheck-new option, which forces it to consider the case
973  // where new can return NULL. If we end up supporting that option, we can
974  // consider adding a check for it here.
975  // C++11 [basic.stc.dynamic.allocation]p3.
976  if (const FunctionDecl *FD = CNE->getOperatorNew()) {
977  QualType Ty = FD->getType();
978  if (const auto *ProtoType = Ty->getAs<FunctionProtoType>())
979  if (!ProtoType->isNothrow())
980  State = State->assume(RetVal.castAs<DefinedOrUnknownSVal>(), true);
981  }
982 
983  ValueBldr.generateNode(
984  CNE, I, addObjectUnderConstruction(State, CNE, LCtx, RetVal));
985  }
986 
987  ExplodedNodeSet DstPostPostCallCallback;
988  getCheckerManager().runCheckersForPostCall(DstPostPostCallCallback,
989  DstPostValue, *Call, *this);
990  for (ExplodedNode *I : DstPostPostCallCallback) {
991  getCheckerManager().runCheckersForNewAllocator(*Call, Dst, I, *this);
992  }
993 }
994 
996  ExplodedNodeSet &Dst) {
997  // FIXME: Much of this should eventually migrate to CXXAllocatorCall.
998  // Also, we need to decide how allocators actually work -- they're not
999  // really part of the CXXNewExpr because they happen BEFORE the
1000  // CXXConstructExpr subexpression. See PR12014 for some discussion.
1001 
1002  unsigned blockCount = currBldrCtx->blockCount();
1003  const LocationContext *LCtx = Pred->getLocationContext();
1004  SVal symVal = UnknownVal();
1005  FunctionDecl *FD = CNE->getOperatorNew();
1006 
1007  bool IsStandardGlobalOpNewFunction =
1009 
1010  ProgramStateRef State = Pred->getState();
1011 
1012  // Retrieve the stored operator new() return value.
1013  if (AMgr.getAnalyzerOptions().MayInlineCXXAllocator) {
1014  symVal = *getObjectUnderConstruction(State, CNE, LCtx);
1015  State = finishObjectConstruction(State, CNE, LCtx);
1016  }
1017 
1018  // We assume all standard global 'operator new' functions allocate memory in
1019  // heap. We realize this is an approximation that might not correctly model
1020  // a custom global allocator.
1021  if (symVal.isUnknown()) {
1022  if (IsStandardGlobalOpNewFunction)
1023  symVal = svalBuilder.getConjuredHeapSymbolVal(CNE, LCtx, blockCount);
1024  else
1025  symVal = svalBuilder.conjureSymbolVal(nullptr, CNE, LCtx, CNE->getType(),
1026  blockCount);
1027  }
1028 
1031  CEMgr.getCXXAllocatorCall(CNE, State, LCtx, getCFGElementRef());
1032 
1033  if (!AMgr.getAnalyzerOptions().MayInlineCXXAllocator) {
1034  // Invalidate placement args.
1035  // FIXME: Once we figure out how we want allocators to work,
1036  // we should be using the usual pre-/(default-)eval-/post-call checkers
1037  // here.
1038  State = Call->invalidateRegions(blockCount);
1039  if (!State)
1040  return;
1041 
1042  // If this allocation function is not declared as non-throwing, failures
1043  // /must/ be signalled by exceptions, and thus the return value will never
1044  // be NULL. -fno-exceptions does not influence this semantics.
1045  // FIXME: GCC has a -fcheck-new option, which forces it to consider the case
1046  // where new can return NULL. If we end up supporting that option, we can
1047  // consider adding a check for it here.
1048  // C++11 [basic.stc.dynamic.allocation]p3.
1049  if (const auto *ProtoType = FD->getType()->getAs<FunctionProtoType>())
1050  if (!ProtoType->isNothrow())
1051  if (auto dSymVal = symVal.getAs<DefinedOrUnknownSVal>())
1052  State = State->assume(*dSymVal, true);
1053  }
1054 
1055  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1056 
1057  SVal Result = symVal;
1058 
1059  if (CNE->isArray()) {
1060 
1061  if (const auto *NewReg = cast_or_null<SubRegion>(symVal.getAsRegion())) {
1062  // If each element is initialized by their default constructor, the field
1063  // values are properly placed inside the required region, however if an
1064  // initializer list is used, this doesn't happen automatically.
1065  auto *Init = CNE->getInitializer();
1066  bool isInitList = isa_and_nonnull<InitListExpr>(Init);
1067 
1068  QualType ObjTy =
1069  isInitList ? Init->getType() : CNE->getType()->getPointeeType();
1070  const ElementRegion *EleReg =
1071  MRMgr.getElementRegion(ObjTy, svalBuilder.makeArrayIndex(0), NewReg,
1072  svalBuilder.getContext());
1073  Result = loc::MemRegionVal(EleReg);
1074 
1075  // If the array is list initialized, we bind the initializer list to the
1076  // memory region here, otherwise we would lose it.
1077  if (isInitList) {
1078  Bldr.takeNodes(Pred);
1079  Pred = Bldr.generateNode(CNE, Pred, State);
1080 
1081  SVal V = State->getSVal(Init, LCtx);
1082  ExplodedNodeSet evaluated;
1083  evalBind(evaluated, CNE, Pred, Result, V, true);
1084 
1085  Bldr.takeNodes(Pred);
1086  Bldr.addNodes(evaluated);
1087 
1088  Pred = *evaluated.begin();
1089  State = Pred->getState();
1090  }
1091  }
1092 
1093  State = State->BindExpr(CNE, Pred->getLocationContext(), Result);
1094  Bldr.generateNode(CNE, Pred, State);
1095  return;
1096  }
1097 
1098  // FIXME: Once we have proper support for CXXConstructExprs inside
1099  // CXXNewExpr, we need to make sure that the constructed object is not
1100  // immediately invalidated here. (The placement call should happen before
1101  // the constructor call anyway.)
1103  // Non-array placement new should always return the placement location.
1104  SVal PlacementLoc = State->getSVal(CNE->getPlacementArg(0), LCtx);
1105  Result = svalBuilder.evalCast(PlacementLoc, CNE->getType(),
1106  CNE->getPlacementArg(0)->getType());
1107  }
1108 
1109  // Bind the address of the object, then check to see if we cached out.
1110  State = State->BindExpr(CNE, LCtx, Result);
1111  ExplodedNode *NewN = Bldr.generateNode(CNE, Pred, State);
1112  if (!NewN)
1113  return;
1114 
1115  // If the type is not a record, we won't have a CXXConstructExpr as an
1116  // initializer. Copy the value over.
1117  if (const Expr *Init = CNE->getInitializer()) {
1118  if (!isa<CXXConstructExpr>(Init)) {
1119  assert(Bldr.getResults().size() == 1);
1120  Bldr.takeNodes(NewN);
1121  evalBind(Dst, CNE, NewN, Result, State->getSVal(Init, LCtx),
1122  /*FirstInit=*/IsStandardGlobalOpNewFunction);
1123  }
1124  }
1125 }
1126 
1128  ExplodedNode *Pred, ExplodedNodeSet &Dst) {
1129 
1132  CDE, Pred->getState(), Pred->getLocationContext(), getCFGElementRef());
1133 
1134  ExplodedNodeSet DstPreCall;
1135  getCheckerManager().runCheckersForPreCall(DstPreCall, Pred, *Call, *this);
1136  ExplodedNodeSet DstPostCall;
1137 
1138  if (AMgr.getAnalyzerOptions().MayInlineCXXAllocator) {
1139  StmtNodeBuilder Bldr(DstPreCall, DstPostCall, *currBldrCtx);
1140  for (ExplodedNode *I : DstPreCall) {
1141  defaultEvalCall(Bldr, I, *Call);
1142  }
1143  } else {
1144  DstPostCall = DstPreCall;
1145  }
1146  getCheckerManager().runCheckersForPostCall(Dst, DstPostCall, *Call, *this);
1147 }
1148 
1150  ExplodedNodeSet &Dst) {
1151  const VarDecl *VD = CS->getExceptionDecl();
1152  if (!VD) {
1153  Dst.Add(Pred);
1154  return;
1155  }
1156 
1157  const LocationContext *LCtx = Pred->getLocationContext();
1158  SVal V = svalBuilder.conjureSymbolVal(CS, LCtx, VD->getType(),
1159  currBldrCtx->blockCount());
1160  ProgramStateRef state = Pred->getState();
1161  state = state->bindLoc(state->getLValue(VD, LCtx), V, LCtx);
1162 
1163  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1164  Bldr.generateNode(CS, Pred, state);
1165 }
1166 
1168  ExplodedNodeSet &Dst) {
1169  StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
1170 
1171  // Get the this object region from StoreManager.
1172  const LocationContext *LCtx = Pred->getLocationContext();
1173  const MemRegion *R =
1174  svalBuilder.getRegionManager().getCXXThisRegion(
1175  getContext().getCanonicalType(TE->getType()),
1176  LCtx);
1177 
1178  ProgramStateRef state = Pred->getState();
1179  SVal V = state->getSVal(loc::MemRegionVal(R));
1180  Bldr.generateNode(TE, Pred, state->BindExpr(TE, LCtx, V));
1181 }
1182 
1184  ExplodedNodeSet &Dst) {
1185  const LocationContext *LocCtxt = Pred->getLocationContext();
1186 
1187  // Get the region of the lambda itself.
1188  const MemRegion *R = svalBuilder.getRegionManager().getCXXTempObjectRegion(
1189  LE, LocCtxt);
1190  SVal V = loc::MemRegionVal(R);
1191 
1192  ProgramStateRef State = Pred->getState();
1193 
1194  // If we created a new MemRegion for the lambda, we should explicitly bind
1195  // the captures.
1196  for (auto const [Idx, FieldForCapture, InitExpr] :
1197  llvm::zip(llvm::seq<unsigned>(0, -1), LE->getLambdaClass()->fields(),
1198  LE->capture_inits())) {
1199  SVal FieldLoc = State->getLValue(FieldForCapture, V);
1200 
1201  SVal InitVal;
1202  if (!FieldForCapture->hasCapturedVLAType()) {
1203  assert(InitExpr && "Capture missing initialization expression");
1204 
1205  // Capturing a 0 length array is a no-op, so we ignore it to get a more
1206  // accurate analysis. If it's not ignored, it would set the default
1207  // binding of the lambda to 'Unknown', which can lead to falsely detecting
1208  // 'Uninitialized' values as 'Unknown' and not reporting a warning.
1209  const auto FTy = FieldForCapture->getType();
1210  if (FTy->isConstantArrayType() &&
1211  getContext().getConstantArrayElementCount(
1212  getContext().getAsConstantArrayType(FTy)) == 0)
1213  continue;
1214 
1215  // With C++17 copy elision the InitExpr can be anything, so instead of
1216  // pattern matching all cases, we simple check if the current field is
1217  // under construction or not, regardless what it's InitExpr is.
1218  if (const auto OUC =
1219  getObjectUnderConstruction(State, {LE, Idx}, LocCtxt)) {
1220  InitVal = State->getSVal(OUC->getAsRegion());
1221 
1222  State = finishObjectConstruction(State, {LE, Idx}, LocCtxt);
1223  } else
1224  InitVal = State->getSVal(InitExpr, LocCtxt);
1225 
1226  } else {
1227 
1228  assert(!getObjectUnderConstruction(State, {LE, Idx}, LocCtxt) &&
1229  "VLA capture by value is a compile time error!");
1230 
1231  // The field stores the length of a captured variable-length array.
1232  // These captures don't have initialization expressions; instead we
1233  // get the length from the VLAType size expression.
1234  Expr *SizeExpr = FieldForCapture->getCapturedVLAType()->getSizeExpr();
1235  InitVal = State->getSVal(SizeExpr, LocCtxt);
1236  }
1237 
1238  State = State->bindLoc(FieldLoc, InitVal, LocCtxt);
1239  }
1240 
1241  // Decay the Loc into an RValue, because there might be a
1242  // MaterializeTemporaryExpr node above this one which expects the bound value
1243  // to be an RValue.
1244  SVal LambdaRVal = State->getSVal(R);
1245 
1246  ExplodedNodeSet Tmp;
1247  StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
1248  // FIXME: is this the right program point kind?
1249  Bldr.generateNode(LE, Pred,
1250  State->BindExpr(LE, LocCtxt, LambdaRVal),
1251  nullptr, ProgramPoint::PostLValueKind);
1252 
1253  // FIXME: Move all post/pre visits to ::Visit().
1254  getCheckerManager().runCheckersForPostStmt(Dst, Tmp, LE, *this);
1255 }
#define V(N, I)
Definition: ASTContext.h:3299
Defines the C++ Decl subclasses, other than those for templates (found in DeclTemplate....
static ProgramStateRef bindRequiredArrayElementToEnvironment(ProgramStateRef State, const ArrayInitLoopExpr *AILE, const LocationContext *LCtx, SVal Idx)
llvm::MachO::Target Target
Definition: MachO.h:50
Defines the PrettyStackTraceEntry class, which is used to make crashes give more contextual informati...
LineState State
Holds long-lived AST nodes (such as types and decls) that can be referred to throughout the semantic ...
Definition: ASTContext.h:185
QualType getPointerType(QualType T) const
Return the uniqued reference to the type for a pointer to the specified type.
const ArrayType * getAsArrayType(QualType T) const
Type Query functions.
uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const
Return number of constant array elements.
uint64_t getArrayInitLoopExprElementCount(const ArrayInitLoopExpr *AILE) const
Return number of elements initialized in an ArrayInitLoopExpr.
AnalysisDeclContext contains the context data for the function, method or block under analysis.
CFG::BuildOptions & getCFGBuildOptions()
Represents a loop initializing the elements of an array.
Definition: Expr.h:5552
OpaqueValueExpr * getCommonExpr() const
Get the common subexpression shared by all initializations (the source array).
Definition: Expr.h:5567
Represents an array type, per C99 6.7.5.2 - Array Declarators.
Definition: Type.h:3530
Represents a function call that returns a C++ object by value.
Definition: CFG.h:185
Represents C++ constructor call.
Definition: CFG.h:156
std::optional< T > getAs() const
Convert to the specified CFGElement type, returning std::nullopt if this CFGElement is not of the des...
Definition: CFG.h:109
CXXCatchStmt - This represents a C++ catch block.
Definition: StmtCXX.h:28
VarDecl * getExceptionDecl() const
Definition: StmtCXX.h:49
Represents a call to a C++ constructor.
Definition: ExprCXX.h:1542
Represents a delete expression for memory deallocation and destructor calls, e.g.
Definition: ExprCXX.h:2493
Represents a C++ destructor within a class.
Definition: DeclCXX.h:2799
Represents a call to an inherited base class constructor from an inheriting constructor.
Definition: ExprCXX.h:1733
Represents a static or instance method of a struct/union/class.
Definition: DeclCXX.h:2060
Represents a new-expression for memory allocation and constructor calls, e.g: "new CXXNewExpr(foo)".
Definition: ExprCXX.h:2236
bool isArray() const
Definition: ExprCXX.h:2344
Expr * getPlacementArg(unsigned I)
Definition: ExprCXX.h:2383
SourceLocation getBeginLoc() const
Definition: ExprCXX.h:2473
Expr * getInitializer()
The initializer of this new-expression.
Definition: ExprCXX.h:2409
FunctionDecl * getOperatorNew() const
Definition: ExprCXX.h:2339
Represents a C++ struct/union/class.
Definition: DeclCXX.h:258
bool isEmpty() const
Determine whether this is an empty class in the sense of (C++11 [meta.unary.prop]).
Definition: DeclCXX.h:1190
Represents the this expression in C++.
Definition: ExprCXX.h:1148
CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
Definition: Expr.h:2872
ConstructionContext's subclasses describe different ways of constructing an object in C++.
virtual const ArrayInitLoopExpr * getArrayInitLoop() const
DeclContext * getParent()
getParent - Returns the containing DeclContext.
Definition: DeclBase.h:2066
Decl - This represents one declaration (or definition), e.g.
Definition: DeclBase.h:86
This represents one expression.
Definition: Expr.h:110
Expr * IgnoreParens() LLVM_READONLY
Skip past any parentheses which might surround this expression until reaching a fixed point.
Definition: Expr.cpp:3107
QualType getType() const
Definition: Expr.h:142
Represents a function declaration or definition.
Definition: Decl.h:1972
bool isReservedGlobalPlacementOperator() const
Determines whether this operator new or delete is one of the reserved global placement operators: voi...
Definition: Decl.cpp:3345
bool isReplaceableGlobalAllocationFunction(std::optional< unsigned > *AlignmentParam=nullptr, bool *IsNothrow=nullptr) const
Determines whether this function is one of the replaceable global allocation functions: void *operato...
Definition: Decl.cpp:3370
Represents a prototype with parameter type info, e.g.
Definition: Type.h:4668
A C++ lambda expression, which produces a function object (of unspecified type) that can be invoked l...
Definition: ExprCXX.h:1950
It wraps the AnalysisDeclContext to represent both the call stack with the help of StackFrameContext ...
const LocationContext * getParent() const
It might return null.
const Decl * getDecl() const
const ParentMap & getParentMap() const
LLVM_ATTRIBUTE_RETURNS_NONNULL AnalysisDeclContext * getAnalysisDeclContext() const
const StackFrameContext * getStackFrame() const
Represents a prvalue temporary that is written into memory so that a reference can bind to it.
Definition: ExprCXX.h:4721
StorageDuration getStorageDuration() const
Retrieve the storage duration for the materialized temporary.
Definition: ExprCXX.h:4746
ValueDecl * getExtendingDecl()
Get the declaration which triggered the lifetime-extension of this temporary, if any.
Definition: ExprCXX.h:4771
Expr * getSubExpr() const
Retrieve the temporary-generating subexpression whose value will be materialized into a glvalue.
Definition: ExprCXX.h:4738
Expr * getSourceExpr() const
The source expression of an opaque value expression is the expression which originally generated the ...
Definition: Expr.h:1218
Stmt * getParent(Stmt *) const
Definition: ParentMap.cpp:152
Represents a program point just after an implicit call event.
Definition: ProgramPoint.h:597
If a crash happens while one of these objects are live, the message is printed out along with the spe...
ProgramPoint withTag(const ProgramPointTag *tag) const
Create a new ProgramPoint object that is the same as the original except for using the specified tag ...
Definition: ProgramPoint.h:129
A (possibly-)qualified type.
Definition: Type.h:940
Represents a struct/union/class.
Definition: Decl.h:4171
It represents a stack frame of the call stack (based on CallEvent).
const CFGBlock * getCallSiteBlock() const
const Stmt * getCallSite() const
Stmt - This represents one statement.
Definition: Stmt.h:84
CXXRecordDecl * getAsCXXRecordDecl() const
Retrieves the CXXRecordDecl that this type refers to, either because the type is a RecordType or beca...
Definition: Type.cpp:1881
QualType getPointeeType() const
If this is a pointer, ObjC object pointer, or block pointer, this returns the respective pointee.
Definition: Type.cpp:705
const T * getAs() const
Member-template getAs<specific type>'.
Definition: Type.h:8160
Represent the declaration of a variable (in which case it is an lvalue) a function (in which case it ...
Definition: Decl.h:707
QualType getType() const
Definition: Decl.h:718
Represents a variable declaration or definition.
Definition: Decl.h:919
AnalyzerOptions & getAnalyzerOptions() override
Represents a call to a C++ constructor.
Definition: CallEvent.h:979
Manages the lifetime of CallEvent objects.
Definition: CallEvent.h:1356
CallEventRef< CXXDestructorCall > getCXXDestructorCall(const CXXDestructorDecl *DD, const Stmt *Trigger, const MemRegion *Target, bool IsBase, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef)
Definition: CallEvent.h:1449
CallEventRef< CXXInheritedConstructorCall > getCXXInheritedConstructorCall(const CXXInheritedCtorInitExpr *E, const MemRegion *Target, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef)
Definition: CallEvent.h:1441
CallEventRef< CXXDeallocatorCall > getCXXDeallocatorCall(const CXXDeleteExpr *E, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef)
Definition: CallEvent.h:1465
CallEventRef< ObjCMethodCall > getObjCMethodCall(const ObjCMessageExpr *E, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef)
Definition: CallEvent.h:1427
CallEventRef getSimpleCall(const CallExpr *E, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef)
Definition: CallEvent.cpp:1403
CallEventRef< CXXAllocatorCall > getCXXAllocatorCall(const CXXNewExpr *E, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef)
Definition: CallEvent.h:1458
CallEventRef< CXXConstructorCall > getCXXConstructorCall(const CXXConstructExpr *E, const MemRegion *Target, ProgramStateRef State, const LocationContext *LCtx, CFGBlock::ConstCFGElementRef ElemRef)
Definition: CallEvent.h:1434
Represents an abstract call to a function or method along a particular path.
Definition: CallEvent.h:153
static bool isVariadic(const Decl *D)
Returns true if the given decl is known to be variadic.
Definition: CallEvent.cpp:380
void runCheckersForPreCall(ExplodedNodeSet &Dst, const ExplodedNodeSet &Src, const CallEvent &Call, ExprEngine &Eng)
Run checkers for pre-visiting obj-c messages.
void runCheckersForEvalCall(ExplodedNodeSet &Dst, const ExplodedNodeSet &Src, const CallEvent &CE, ExprEngine &Eng, const EvalCallOptions &CallOpts)
Run checkers for evaluating a call.
void runCheckersForPostStmt(ExplodedNodeSet &Dst, const ExplodedNodeSet &Src, const Stmt *S, ExprEngine &Eng, bool wasInlined=false)
Run checkers for post-visiting Stmts.
void runCheckersForNewAllocator(const CXXAllocatorCall &Call, ExplodedNodeSet &Dst, ExplodedNode *Pred, ExprEngine &Eng, bool wasInlined=false)
Run checkers between C++ operator new and constructor calls.
void runCheckersForPreStmt(ExplodedNodeSet &Dst, const ExplodedNodeSet &Src, const Stmt *S, ExprEngine &Eng)
Run checkers for pre-visiting Stmts.
void runCheckersForPostCall(ExplodedNodeSet &Dst, const ExplodedNodeSet &Src, const CallEvent &Call, ExprEngine &Eng, bool wasInlined=false)
Run checkers for post-visiting obj-c messages.
ElementRegion is used to represent both array elements and casts.
Definition: MemRegion.h:1194
void Add(ExplodedNode *N)
const ProgramStateRef & getState() const
const LocationContext * getLocationContext() const
ProgramPoint getLocation() const
getLocation - Returns the edge associated with the given node.
void VisitCXXDestructor(QualType ObjectType, const MemRegion *Dest, const Stmt *S, bool IsBaseDtor, ExplodedNode *Pred, ExplodedNodeSet &Dst, EvalCallOptions &Options)
void VisitCXXNewExpr(const CXXNewExpr *CNE, ExplodedNode *Pred, ExplodedNodeSet &Dst)
void VisitLambdaExpr(const LambdaExpr *LE, ExplodedNode *Pred, ExplodedNodeSet &Dst)
VisitLambdaExpr - Transfer function logic for LambdaExprs.
const CoreEngine & getCoreEngine() const
Definition: ExprEngine.h:433
static std::optional< SVal > getObjectUnderConstruction(ProgramStateRef State, const ConstructionContextItem &Item, const LocationContext *LC)
By looking at a certain item that may be potentially part of an object's ConstructionContext,...
Definition: ExprEngine.cpp:603
CFGElement getCurrentCFGElement()
Return the CFG element corresponding to the worklist element that is currently being processed by Exp...
Definition: ExprEngine.h:687
CheckerManager & getCheckerManager() const
Definition: ExprEngine.h:204
SVal computeObjectUnderConstruction(const Expr *E, ProgramStateRef State, const NodeBuilderContext *BldrCtx, const LocationContext *LCtx, const ConstructionContext *CC, EvalCallOptions &CallOpts, unsigned Idx=0)
Find location of the object that is being constructed by a given constructor.
static std::optional< unsigned > getIndexOfElementToConstruct(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx)
Retreives which element is being constructed in a non-POD type array.
Definition: ExprEngine.cpp:513
ProgramStateManager & getStateManager()
Definition: ExprEngine.h:410
void VisitCXXNewAllocatorCall(const CXXNewExpr *CNE, ExplodedNode *Pred, ExplodedNodeSet &Dst)
SValBuilder & getSValBuilder()
Definition: ExprEngine.h:208
void CreateCXXTemporaryObject(const MaterializeTemporaryExpr *ME, ExplodedNode *Pred, ExplodedNodeSet &Dst)
Create a C++ temporary object for an rvalue.
CFGBlock::ConstCFGElementRef getCFGElementRef() const
Definition: ExprEngine.h:229
std::pair< ProgramStateRef, SVal > handleConstructionContext(const Expr *E, ProgramStateRef State, const NodeBuilderContext *BldrCtx, const LocationContext *LCtx, const ConstructionContext *CC, EvalCallOptions &CallOpts, unsigned Idx=0)
A convenient wrapper around computeObjectUnderConstruction and updateObjectsUnderConstruction.
Definition: ExprEngine.h:738
ASTContext & getContext() const
getContext - Return the ASTContext associated with this analysis.
Definition: ExprEngine.h:196
ProgramStateRef bindReturnValue(const CallEvent &Call, const LocationContext *LCtx, ProgramStateRef State)
Create a new state in which the call return value is binded to the call origin expression.
void VisitCXXThisExpr(const CXXThisExpr *TE, ExplodedNode *Pred, ExplodedNodeSet &Dst)
void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE, ExplodedNode *Pred, ExplodedNodeSet &Dst)
void VisitCXXConstructExpr(const CXXConstructExpr *E, ExplodedNode *Pred, ExplodedNodeSet &Dst)
void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E, ExplodedNode *Pred, ExplodedNodeSet &Dst)
StoreManager & getStoreManager()
Definition: ExprEngine.h:412
void defaultEvalCall(NodeBuilder &B, ExplodedNode *Pred, const CallEvent &Call, const EvalCallOptions &CallOpts={})
Default implementation of call evaluation.
void VisitCXXCatchStmt(const CXXCatchStmt *CS, ExplodedNode *Pred, ExplodedNodeSet &Dst)
ProgramStateRef updateObjectsUnderConstruction(SVal V, const Expr *E, ProgramStateRef State, const LocationContext *LCtx, const ConstructionContext *CC, const EvalCallOptions &CallOpts)
Update the program state with all the path-sensitive information that's necessary to perform construc...
static std::optional< unsigned > getPendingInitLoop(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx)
Retreives the size of the array in the pending ArrayInitLoopExpr.
Definition: ExprEngine.cpp:486
const CXXThisRegion * getCXXThisRegion(QualType thisPointerTy, const LocationContext *LC)
getCXXThisRegion - Retrieve the [artificial] region associated with the parameter 'this'.
Definition: MemRegion.cpp:1289
const ElementRegion * getElementRegion(QualType elementType, NonLoc Idx, const SubRegion *superRegion, ASTContext &Ctx)
getElementRegion - Retrieve the memory region associated with the associated element type,...
Definition: MemRegion.cpp:1159
const CXXLifetimeExtendedObjectRegion * getCXXLifetimeExtendedObjectRegion(Expr const *Ex, ValueDecl const *VD, LocationContext const *LC)
Create a CXXLifetimeExtendedObjectRegion for temporaries which are lifetime-extended by local referen...
Definition: MemRegion.cpp:1224
const CXXTempObjectRegion * getCXXTempObjectRegion(Expr const *Ex, LocationContext const *LC)
Definition: MemRegion.cpp:1216
const CXXBaseObjectRegion * getCXXBaseObjectRegion(const CXXRecordDecl *BaseClass, const SubRegion *Super, bool IsVirtual)
Create a CXXBaseObjectRegion with the given base class for region Super.
Definition: MemRegion.cpp:1263
const CXXLifetimeExtendedObjectRegion * getCXXStaticLifetimeExtendedObjectRegion(const Expr *Ex, ValueDecl const *VD)
Create a CXXLifetimeExtendedObjectRegion for temporaries which are lifetime-extended by static refere...
Definition: MemRegion.cpp:1233
MemRegion - The root abstract class for all memory regions.
Definition: MemRegion.h:96
unsigned blockCount() const
Returns the number of times the current basic block has been visited on the exploded graph path.
Definition: CoreEngine.h:222
This is the simplest builder which generates nodes in the ExplodedGraph.
Definition: CoreEngine.h:238
void takeNodes(const ExplodedNodeSet &S)
Definition: CoreEngine.h:333
ExplodedNode * generateSink(const ProgramPoint &PP, ProgramStateRef State, ExplodedNode *Pred)
Generates a sink in the ExplodedGraph.
Definition: CoreEngine.h:304
void addNodes(const ExplodedNodeSet &S)
Definition: CoreEngine.h:339
ExplodedNode * generateNode(const ProgramPoint &PP, ProgramStateRef State, ExplodedNode *Pred)
Generates a node in the ExplodedGraph.
Definition: CoreEngine.h:291
const ExplodedNodeSet & getResults()
Definition: CoreEngine.h:310
CallEventManager & getCallEventManager()
Definition: ProgramState.h:579
ASTContext & getContext()
Definition: SValBuilder.h:148
NonLoc makeArrayIndex(uint64_t idx)
Definition: SValBuilder.h:284
loc::MemRegionVal makeLoc(SymbolRef sym)
Definition: SValBuilder.h:377
SVal evalCast(SVal V, QualType CastTy, QualType OriginalTy)
Cast a given SVal to another SVal using given QualType's.
DefinedOrUnknownSVal conjureSymbolVal(const void *symbolTag, const Expr *expr, const LocationContext *LCtx, unsigned count)
Create a new symbol with a unique 'name'.
MemRegionManager & getRegionManager()
Definition: SValBuilder.h:167
loc::MemRegionVal getCXXThis(const CXXMethodDecl *D, const StackFrameContext *SFC)
Return a memory region for the 'this' object reference.
DefinedOrUnknownSVal getConjuredHeapSymbolVal(const Expr *E, const LocationContext *LCtx, unsigned Count)
Conjure a symbol representing heap allocated memory region.
SVal - This represents a symbolic expression, which can be either an L-value or an R-value.
Definition: SVals.h:55
const MemRegion * getAsRegion() const
Definition: SVals.cpp:120
std::optional< T > getAs() const
Convert to the specified SVal type, returning std::nullopt if this SVal is not of the desired type.
Definition: SVals.h:86
T castAs() const
Convert to the specified SVal type, asserting that this SVal is of the desired type.
Definition: SVals.h:82
bool isUnknown() const
Definition: SVals.h:102
This builder class is useful for generating nodes that resulted from visiting a statement.
Definition: CoreEngine.h:382
ExplodedNode * generateNode(const Stmt *S, ExplodedNode *Pred, ProgramStateRef St, const ProgramPointTag *tag=nullptr, ProgramPoint::Kind K=ProgramPoint::PostStmtKind)
Definition: CoreEngine.h:411
SVal evalDerivedToBase(SVal Derived, const CastExpr *Cast)
Evaluates a chain of derived-to-base casts through the path specified in Cast.
Definition: Store.cpp:252
SubRegion - A region that subsets another larger region.
Definition: MemRegion.h:441
TypedValueRegion - An abstract class representing regions having a typed value.
Definition: MemRegion.h:530
bool Call(InterpState &S, CodePtr OpPC, const Function *Func, uint32_t VarArgSize)
Definition: Interp.h:2179
bool NE(InterpState &S, CodePtr OpPC)
Definition: Interp.h:869
bool LE(InterpState &S, CodePtr OpPC)
Definition: Interp.h:883
The JSON file list parser is used to communicate input to InstallAPI.
CXXConstructionKind
Definition: ExprCXX.h:1534
StorageDuration
The storage duration for an object (per C++ [basic.stc]).
Definition: Specifiers.h:324
@ SD_Thread
Thread storage duration.
Definition: Specifiers.h:327
@ SD_Static
Static storage duration.
Definition: Specifiers.h:328
@ SD_FullExpression
Full-expression storage duration (for temporaries).
Definition: Specifiers.h:325
const FunctionProtoType * T
Expr * extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr *AILE)
Definition: CFG.cpp:1364
unsigned long uint64_t
Hints for figuring out of a call should be inlined during evalCall().
Definition: ExprEngine.h:97
bool IsTemporaryLifetimeExtendedViaAggregate
This call is a constructor for a temporary that is lifetime-extended by binding it to a reference-typ...
Definition: ExprEngine.h:112
bool IsTemporaryCtorOrDtor
This call is a constructor or a destructor of a temporary value.
Definition: ExprEngine.h:107
bool IsArrayCtorOrDtor
This call is a constructor or a destructor for a single element within an array, a part of array cons...
Definition: ExprEngine.h:104
bool IsElidableCtorThatHasNotBeenElided
This call is a pre-C++17 elidable constructor that we failed to elide because we failed to compute th...
Definition: ExprEngine.h:119
bool IsCtorOrDtorWithImproperlyModeledTargetRegion
This call is a constructor or a destructor for which we do not currently compute the this-region corr...
Definition: ExprEngine.h:100