Releases
2.0.110+xpu
Intel® Extension for PyTorch* v2.0.110+xpu is the new Intel® Extension for PyTorch* release supports both CPU platforms and GPU platforms (Intel® Data Center GPU Flex Series and Intel® Data Center GPU Max Series) based on PyTorch* 2.0.1. It extends PyTorch* 2.0.1 with up-to-date features and optimizations on xpu
for an extra performance boost on Intel hardware. Optimizations take advantage of AVX-512 Vector Neural Network Instructions (AVX512 VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel Xe Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, through PyTorch* xpu
device, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs with PyTorch*.
Highlights
This release introduces specific XPU solution optimizations on Intel discrete GPUs which include Intel® Data Center GPU Flex Series and Intel® Data Center GPU Max Series. Optimized operators and kernels are implemented and registered through PyTorch* dispatching mechanism for the xpu
device. These operators and kernels are accelerated on Intel GPU hardware from the corresponding native vectorization and matrix calculation features. In graph mode, additional operator fusions are supported to reduce operator/kernel invocation overheads, and thus increase performance.
This release provides the following features:
oneDNN 3.3 API integration and adoption
Libtorch support
ARC support on Windows, WSL2 and Ubuntu (Experimental)
OOB models improvement
More fusion patterns enabled for optimizing OOB models
CPU support is merged in this release:
CPU features and optimizations are equivalent to what has been released in Intel® Extension for PyTorch* v2.0.100+cpu release that was made publicly available in May 2023. For customers who would like to evaluate workloads on both GPU and CPU, they can use this package. For customers who are focusing on CPU only, we still recommend them to use Intel® Extension for PyTorch* v2.0.100+cpu release for smaller footprint, less dependencies and broader OS support.
This release adds the following fusion patterns in PyTorch* JIT mode for Intel GPU:
add
+softmax
add
+view
+softmax
Known Issues
Please refer to Known Issues webpage.
1.13.120+xpu
Intel® Extension for PyTorch* v1.13.120+xpu is the updated Intel® Extension for PyTorch* release supports both CPU platforms and GPU platforms (Intel® Data Center GPU Flex Series and Intel® Data Center GPU Max Series) based on PyTorch* 1.13.1. It extends PyTorch* 1.13.1 with up-to-date features and optimizations on xpu
for an extra performance boost on Intel hardware. Optimizations take advantage of AVX-512 Vector Neural Network Instructions (AVX512 VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel Xe Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, through PyTorch* xpu
device, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs with PyTorch*.
Highlights
This release introduces specific XPU solution optimizations on Intel discrete GPUs which include Intel® Data Center GPU Flex Series and Intel® Data Center GPU Max Series. Optimized operators and kernels are implemented and registered through PyTorch* dispatching mechanism for the xpu
device. These operators and kernels are accelerated on Intel GPU hardware from the corresponding native vectorization and matrix calculation features. In graph mode, additional operator fusions are supported to reduce operator/kernel invocation overheads, and thus increase performance.
This release provides the following features:
oneDNN 3.1 API integration and adoption
OOB models improvement
More fusion patterns enabled for optimizing OOB models
CPU support is merged in this release:
CPU features and optimizations are equivalent to what has been released in Intel® Extension for PyTorch* v1.13.100+cpu release that was made publicly available in Feb 2023. For customers who would like to evaluate workloads on both GPU and CPU, they can use this package. For customers who are focusing on CPU only, we still recommend them to use Intel® Extension for PyTorch* v1.13.100+cpu release for smaller footprint, less dependencies and broader OS support.
This release adds the following fusion patterns in PyTorch* JIT mode for Intel GPU:
Matmul
+ UnaryOp(abs
,sqrt
,square
,exp
,log
,round
,Log_Sigmoid
,Hardswish
,HardSigmoid
,Pow
,ELU
,SiLU
,hardtanh
,Leaky_relu
)Conv2d
+ BinaryOp(add
,sub
,mul
,div
,max
,min
,eq
,ne
,ge
,gt
,le
,lt
)Linear
+ BinaryOp(add
,sub
,mul
,div
,max
,min
)Conv2d
+mul
+add
Conv2d
+mul
+add
+relu
Conv2d
+sigmoid
+mul
+add
Conv2d
+sigmoid
+mul
+add
+relu
Known Issues
Please refer to Known Issues webpage.
1.13.10+xpu
Intel® Extension for PyTorch* v1.13.10+xpu is the first Intel® Extension for PyTorch* release supports both CPU platforms and GPU platforms (Intel® Data Center GPU Flex Series and Intel® Data Center GPU Max Series) based on PyTorch* 1.13. It extends PyTorch* 1.13 with up-to-date features and optimizations on xpu
for an extra performance boost on Intel hardware. Optimizations take advantage of AVX-512 Vector Neural Network Instructions (AVX512 VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel Xe Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, through PyTorch* xpu
device, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs with PyTorch*.
Highlights
This release introduces specific XPU solution optimizations on Intel discrete GPUs which include Intel® Data Center GPU Flex Series and Intel® Data Center GPU Max Series. Optimized operators and kernels are implemented and registered through PyTorch* dispatching mechanism for the xpu
device. These operators and kernels are accelerated on Intel GPU hardware from the corresponding native vectorization and matrix calculation features. In graph mode, additional operator fusions are supported to reduce operator/kernel invocation overheads, and thus increase performance.
This release provides the following features:
Distributed Training on GPU:
support of distributed training with DistributedDataParallel (DDP) on Intel GPU hardware
support of distributed training with Horovod (experimental feature) on Intel GPU hardware
Automatic channels last format conversion on GPU:
Automatic channels last format conversion is enabled. Models using
torch.xpu.optimize
API running on Intel® Data Center GPU Max Series will be converted to channels last memory format, while models running on Intel® Data Center GPU Flex Series will choose oneDNN block format.
CPU support is merged in this release:
CPU features and optimizations are equivalent to what has been released in Intel® Extension for PyTorch* v1.13.0+cpu release that was made publicly available in Nov 2022. For customers who would like to evaluate workloads on both GPU and CPU, they can use this package. For customers who are focusing on CPU only, we still recommend them to use Intel® Extension for PyTorch* v1.13.0+cpu release for smaller footprint, less dependencies and broader OS support.
This release adds the following fusion patterns in PyTorch* JIT mode for Intel GPU:
Conv2D
+ UnaryOp(abs
,sqrt
,square
,exp
,log
,round
,GeLU
,Log_Sigmoid
,Hardswish
,Mish
,HardSigmoid
,Tanh
,Pow
,ELU
,hardtanh
)Linear
+ UnaryOp(abs
,sqrt
,square
,exp
,log
,round
,Log_Sigmoid
,Hardswish
,HardSigmoid
,Pow
,ELU
,SiLU
,hardtanh
,Leaky_relu
)
Known Issues
Please refer to Known Issues webpage.
1.10.200+gpu
Intel® Extension for PyTorch* v1.10.200+gpu extends PyTorch* 1.10 with up-to-date features and optimizations on XPU for an extra performance boost on Intel Graphics cards. XPU is a user visible device that is a counterpart of the well-known CPU and CUDA in the PyTorch* community. XPU represents an Intel-specific kernel and graph optimizations for various “concrete” devices. The XPU runtime will choose the actual device when executing AI workloads on the XPU device. The default selected device is Intel GPU. XPU kernels from Intel® Extension for PyTorch* are written in DPC++ that supports SYCL language and also a number of DPC++ extensions.
Highlights
This release introduces specific XPU solution optimizations on Intel® Data Center GPU Flex Series 170. Optimized operators and kernels are implemented and registered through PyTorch* dispatching mechanism for the XPU device. These operators and kernels are accelerated on Intel GPU hardware from the corresponding native vectorization and matrix calculation features. In graph mode, additional operator fusions are supported to reduce operator/kernel invocation overheads, and thus increase performance.
This release provides the following features:
Auto Mixed Precision (AMP)
support of AMP with BFloat16 and Float16 optimization of GPU operators
Channels Last
support of channels_last (NHWC) memory format for most key GPU operators
DPC++ Extension
mechanism to create PyTorch* operators with custom DPC++ kernels running on the XPU device
Optimized Fusion
support of SGD/AdamW fusion for both FP32 and BF16 precision
This release supports the following fusion patterns in PyTorch* JIT mode:
Conv2D + ReLU
Conv2D + Sum
Conv2D + Sum + ReLU
Pad + Conv2d
Conv2D + SiLu
Permute + Contiguous
Conv3D + ReLU
Conv3D + Sum
Conv3D + Sum + ReLU
Linear + ReLU
Linear + Sigmoid
Linear + Div(scalar)
Linear + GeLu
Linear + GeLu_
T + Addmm
T + Addmm + ReLu
T + Addmm + Sigmoid
T + Addmm + Dropout
T + Matmul
T + Matmul + Add
T + Matmul + Add + GeLu
T + Matmul + Add + Dropout
Transpose + Matmul
Transpose + Matmul + Div
Transpose + Matmul + Div + Add
MatMul + Add
MatMul + Div
Dequantize + PixelShuffle
Dequantize + PixelShuffle + Quantize
Mul + Add
Add + ReLU
Conv2D + Leaky_relu
Conv2D + Leaky_relu_
Conv2D + Sigmoid
Conv2D + Dequantize
Softplus + Tanh
Softplus + Tanh + Mul
Conv2D + Dequantize + Softplus + Tanh + Mul
Conv2D + Dequantize + Softplus + Tanh + Mul + Quantize
Conv2D + Dequantize + Softplus + Tanh + Mul + Quantize + Add
Known Issues
[CRITICAL ERROR] Kernel ‘XXX’ removed due to usage of FP64 instructions unsupported by the targeted hardware
FP64 is not natively supported by the Intel® Data Center GPU Flex Series platform. If you run any AI workload on that platform and receive this error message, it means a kernel requiring FP64 instructions is removed and not executed, hence the accuracy of the whole workload is wrong.
symbol undefined caused by _GLIBCXX_USE_CXX11_ABI
ImportError: undefined symbol: _ZNK5torch8autograd4Node4nameB5cxx11Ev
DPC++ does not support _GLIBCXX_USE_CXX11_ABI=0, Intel® Extension for PyTorch* is always compiled with _GLIBCXX_USE_CXX11_ABI=1. This symbol undefined issue appears when PyTorch* is compiled with _GLIBCXX_USE_CXX11_ABI=0. Update PyTorch* CMAKE file to set _GLIBCXX_USE_CXX11_ABI=1 and compile PyTorch* with particular compiler which supports _GLIBCXX_USE_CXX11_ABI=1. We recommend to use gcc version 9.4.0 on ubuntu 20.04.
Can’t find oneMKL library when build Intel® Extension for PyTorch* without oneMKL
/usr/bin/ld: cannot find -lmkl_sycl /usr/bin/ld: cannot find -lmkl_intel_ilp64 /usr/bin/ld: cannot find -lmkl_core /usr/bin/ld: cannot find -lmkl_tbb_thread dpcpp: error: linker command failed with exit code 1 (use -v to see invocation)
When PyTorch* is built with oneMKL library and Intel® Extension for PyTorch* is built without oneMKL library, this linker issue may occur. Resolve it by setting:
export USE_ONEMKL=OFF export MKL_DPCPP_ROOT=${PATH_To_Your_oneMKL}/__release_lnx/mkl
Then clean build Intel® Extension for PyTorch*.
undefined symbol: mkl_lapack_dspevd. Intel MKL FATAL ERROR: cannot load libmkl_vml_avx512.so.2 or libmkl_vml_def.so.2
This issue may occur when Intel® Extension for PyTorch* is built with oneMKL library and PyTorch* is not build with any MKL library. The oneMKL kernel may run into CPU backend incorrectly and trigger this issue. Resolve it by installing MKL library from conda:
conda install mkl conda install mkl-include
then clean build PyTorch*.
OSError: libmkl_intel_lp64.so.1: cannot open shared object file: No such file or directory
Wrong MKL library is used when multiple MKL libraries exist in system. Preload oneMKL by:
export LD_PRELOAD=${MKL_DPCPP_ROOT}/lib/intel64/libmkl_intel_lp64.so.1:${MKL_DPCPP_ROOT}/lib/intel64/libmkl_intel_ilp64.so.1:${MKL_DPCPP_ROOT}/lib/intel64/libmkl_sequential.so.1:${MKL_DPCPP_ROOT}/lib/intel64/libmkl_core.so.1:${MKL_DPCPP_ROOT}/lib/intel64/libmkl_sycl.so.1
If you continue seeing similar issues for other shared object files, add the corresponding files under ${MKL_DPCPP_ROOT}/lib/intel64/ by
LD_PRELOAD
. Note that the suffix of the libraries may change (e.g. from .1 to .2), if more than one oneMKL library is installed on the system.