Source code for tlt.models.text_classification.text_classification_model

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#

import abc

from tlt.models.model import BaseModel
from tlt.utils.types import FrameworkType, UseCaseType


[docs]class TextClassificationModel(BaseModel): """ Class to represent a pretrained model for text classification """
[docs] def __init__(self, model_name: str, framework: FrameworkType, use_case: UseCaseType, dropout_layer_rate: float): self._dropout_layer_rate = dropout_layer_rate BaseModel.__init__(self, model_name, framework, use_case) # Default learning rate for text models self._learning_rate = 3e-5 if framework == FrameworkType.TENSORFLOW: self._quantization_approach = 'static' else: self._quantization_approach = 'dynamic'
@property @abc.abstractmethod def num_classes(self): """ The number of output neurons in the model; equal to the number of classes in the dataset """ pass @abc.abstractmethod def predict(self, input_samples): """ Generates predictions for the input samples. The input samples can be a BaseDataset type of object or a numpy array. Returns a numpy array of predictions. """ pass @property def dropout_layer_rate(self): """ The probability of any one node being dropped when a dropout layer is used """ return self._dropout_layer_rate