tlt.models.text_classification.text_classification_model.TextClassificationModel

class tlt.models.text_classification.text_classification_model.TextClassificationModel(model_name: str, framework: FrameworkType, use_case: UseCaseType, dropout_layer_rate: float)[source]

Class to represent a pretrained model for text classification

__init__(model_name: str, framework: FrameworkType, use_case: UseCaseType, dropout_layer_rate: float)[source]

Class constructor

Methods

__init__(model_name, framework, use_case, ...)

Class constructor

benchmark(dataset[, saved_model_dir, ...])

Use Intel Neural Compressor to benchmark the model with the dataset argument.

evaluate(dataset)

Evaluate the model using the specified dataset.

export(output_dir)

Export the serialized model to an output directory

load_from_directory(model_dir)

Load a model from a directory

optimize_graph(output_dir[, overwrite_model])

Performs FP32 graph optimization using the Intel Neural Compressor on the model and writes the inference-optimized model to the output_dir.

predict(input_samples)

Generates predictions for the input samples.

quantize(output_dir, dataset[, config, ...])

Performs post training quantization using the Intel Neural Compressor on the model using the dataset.

train(dataset, output_dir[, epochs, ...])

Train the model using the specified dataset

Attributes

dropout_layer_rate

The probability of any one node being dropped when a dropout layer is used

framework

Framework with which the model is compatible

learning_rate

Learning rate for the model

model_name

Name of the model

num_classes

The number of output neurons in the model; equal to the number of classes in the dataset

preprocessor

Preprocessor for the model

use_case

Use case (or category) to which the model belongs