tlt.models.text_classification.text_classification_model.TextClassificationModel¶
- class tlt.models.text_classification.text_classification_model.TextClassificationModel(model_name: str, framework: FrameworkType, use_case: UseCaseType, dropout_layer_rate: float)[source]¶
Class to represent a pretrained model for text classification
- __init__(model_name: str, framework: FrameworkType, use_case: UseCaseType, dropout_layer_rate: float)[source]¶
Class constructor
Methods
__init__
(model_name, framework, use_case, ...)Class constructor
benchmark
(dataset[, saved_model_dir, ...])Use Intel Neural Compressor to benchmark the model with the dataset argument.
evaluate
(dataset)Evaluate the model using the specified dataset.
export
(output_dir)Export the serialized model to an output directory
load_from_directory
(model_dir)Load a model from a directory
optimize_graph
(output_dir[, overwrite_model])Performs FP32 graph optimization using the Intel Neural Compressor on the model and writes the inference-optimized model to the output_dir.
predict
(input_samples)Generates predictions for the input samples.
quantize
(output_dir, dataset[, config, ...])Performs post training quantization using the Intel Neural Compressor on the model using the dataset.
train
(dataset, output_dir[, epochs, ...])Train the model using the specified dataset
Attributes
dropout_layer_rate
The probability of any one node being dropped when a dropout layer is used
framework
Framework with which the model is compatible
learning_rate
Learning rate for the model
model_name
Name of the model
num_classes
The number of output neurons in the model; equal to the number of classes in the dataset
preprocessor
Preprocessor for the model
use_case
Use case (or category) to which the model belongs