tlt.models.tf_model.TFModel¶
- class tlt.models.tf_model.TFModel(model_name: str, framework: FrameworkType, use_case: UseCaseType)[source]¶
Base class to represent a TF pretrained model
- __init__(model_name: str, framework: FrameworkType, use_case: UseCaseType)[source]¶
Class constructor
Methods
__init__(model_name, framework, use_case)Class constructor
benchmark(dataset[, saved_model_dir, ...])Use Intel Neural Compressor to benchmark the model with the dataset argument.
cleanup_saved_objects_for_distributed()evaluate(dataset)Evaluate the model using the specified dataset.
export(output_dir)Exports a trained model as a saved_model.pb file.
export_for_distributed([export_dir, ...])Exports the model, optimizer, loss, train data and validation data to the export_dir for distributed script to access.
load_from_directory(model_dir)Loads a saved model from the specified directory
optimize_graph(output_dir[, overwrite_model])Performs FP32 graph optimization using the Intel Neural Compressor on the model and writes the inference-optimized model to the output_dir.
quantize(output_dir, dataset[, config, ...])Performs post training quantization using the Intel Neural Compressor on the model using the dataset.
set_auto_mixed_precision(...)Enable auto mixed precision for training.
train(dataset, output_dir[, epochs, ...])Train the model using the specified dataset
Attributes
frameworkFramework with which the model is compatible
learning_rateLearning rate for the model
model_nameName of the model
preprocessorPreprocessor for the model
use_caseUse case (or category) to which the model belongs