tlt.models.pytorch_model.PyTorchModel

class tlt.models.pytorch_model.PyTorchModel(model_name: str, framework: FrameworkType, use_case: UseCaseType)[source]

Base class to represent a PyTorch model

__init__(model_name: str, framework: FrameworkType, use_case: UseCaseType)[source]

Class constructor

Methods

__init__(model_name, framework, use_case)

Class constructor

benchmark(dataset[, saved_model_dir, ...])

Use Intel Neural Compressor to benchmark the model with the dataset argument.

evaluate(dataset)

Evaluate the model using the specified dataset.

export(output_dir)

Export the serialized model to an output directory

freeze_layer(layer_name)

Freezes the model's layer using a layer name :param layer_name: The layer name that will be frozen in the model :type layer_name: string

list_layers([verbose])

Lists all of the named modules (e.g.

load_from_directory(model_dir)

Load a saved model from the model_dir path

optimize_graph(output_dir[, overwrite_model])

Performs FP32 graph optimization using the Intel Neural Compressor on the model and writes the inference-optimized model to the output_dir. Graph optimization includes converting variables to constants, removing training-only operations like checkpoint saving, stripping out parts of the graph that are never reached, removing debug operations like CheckNumerics, folding batch normalization ops into the pre-calculated weights, and fusing common operations into unified versions. :param output_dir: Writable output directory to save the optimized model :type output_dir: str :param overwrite_model: Specify whether or not to overwrite the output_dir, if it already exists (default: False) :type overwrite_model: bool.

quantize(output_dir, dataset[, config, ...])

Performs post training quantization using the Intel Neural Compressor on the model using the dataset.

train(dataset, output_dir[, epochs, ...])

Train the model using the specified dataset

unfreeze_layer(layer_name)

Unfreezes the model's layer using a layer name :param layer_name: The layer name that will be frozen in the model :type layer_name: string

Attributes

framework

Framework with which the model is compatible

learning_rate

Learning rate for the model

model_name

Name of the model

preprocessor

Preprocessor for the model

use_case

Use case (or category) to which the model belongs