tlt.models.pytorch_model.PyTorchModel¶
- class tlt.models.pytorch_model.PyTorchModel(model_name: str, framework: FrameworkType, use_case: UseCaseType)[source]¶
Base class to represent a PyTorch model
- __init__(model_name: str, framework: FrameworkType, use_case: UseCaseType)[source]¶
Class constructor
Methods
__init__
(model_name, framework, use_case)Class constructor
benchmark
(dataset[, saved_model_dir, ...])Use Intel Neural Compressor to benchmark the model with the dataset argument.
evaluate
(dataset)Evaluate the model using the specified dataset.
export
(output_dir)Export the serialized model to an output directory
freeze_layer
(layer_name)Freezes the model's layer using a layer name :param layer_name: The layer name that will be frozen in the model :type layer_name: string
list_layers
([verbose])Lists all of the named modules (e.g.
load_from_directory
(model_dir)Load a saved model from the model_dir path
optimize_graph
(output_dir[, overwrite_model])Performs FP32 graph optimization using the Intel Neural Compressor on the model and writes the inference-optimized model to the output_dir. Graph optimization includes converting variables to constants, removing training-only operations like checkpoint saving, stripping out parts of the graph that are never reached, removing debug operations like CheckNumerics, folding batch normalization ops into the pre-calculated weights, and fusing common operations into unified versions. :param output_dir: Writable output directory to save the optimized model :type output_dir: str :param overwrite_model: Specify whether or not to overwrite the output_dir, if it already exists (default: False) :type overwrite_model: bool.
quantize
(output_dir, dataset[, config, ...])Performs post training quantization using the Intel Neural Compressor on the model using the dataset.
train
(dataset, output_dir[, epochs, ...])Train the model using the specified dataset
unfreeze_layer
(layer_name)Unfreezes the model's layer using a layer name :param layer_name: The layer name that will be frozen in the model :type layer_name: string
Attributes
framework
Framework with which the model is compatible
learning_rate
Learning rate for the model
model_name
Name of the model
preprocessor
Preprocessor for the model
use_case
Use case (or category) to which the model belongs