Validated Models
Intel® Neural Compressor validated examples with multiple compression techniques. The typical examples link can be found in example tables, and the performance/accuracy results is available here.
Validated Quantization Examples
1.1. TensorFlow Models with TensorFlow 2.15.0
1.2. PyTorch Models with Torch 2.2.1+cpu in PTQ Mode
1.3. PyTorch Models with Torch 2.2.1+cpu in QAT Mode
1.4. PyTorch Models with Torch 2.0.1+cpu in WOQ Mode
Validated ONNX QDQ INT8 Models on Multiple Hardware through ONNX Runtime
Validated Quantization Examples
System summary: Test by Intel on 3/18/2024. 1-node, 1x Intel(R) Xeon(R) Platinum 8480+ @3.8GHz, 56 cores/socket, HT On, Turbo On, Total Memory 256GB (16x16GB DDR5 4800 MT/s [4800 MT/s]), BIOS 3A14.TEL2P1, microcode 0x2b0001b0,
CentOS Stream 8, gcc (GCC) 8.5.0 20210514 (Red Hat 8.5.0-10), DL Models, Frameworks: TensorFlow/ONNXRT/PyTorch, Datatype: FP32/INT8/BF16.
Using 1 socket, 4 cores/instance, 14 instances and batch size 1 to benchmark most of the model.
Performance varies by use, configuration and other factors.
For more complete information about performance and benchmark results, visit www.intel.com/benchmarks
TensorFlow Models with TensorFlow 2.15.0
Model | Example | Accuracy | Performance 1s4c14ins1bs Throughput(samples/sec) |
||||
---|---|---|---|---|---|---|---|
INT8 | FP32 | Accuracy Ratio [(INT8-FP32)/FP32] |
INT8 | FP32 | Performance Ratio [INT8/FP32] |
||
ResNet50 v1.0 | pb | 74.11% | 74.27% | -0.22% | 1720.00 | 582.18 | 2.95x |
ResNet50 v1.5 | pb | 76.25% | 76.46% | -0.28% | 1517.38 | 570.65 | 2.66x |
ResNet101 | pb | 77.52% | 76.45% | 1.41% | 1058.93 | 382.96 | 2.77x |
Inception V1 | pb | 70.45% | 69.74% | 1.03% | 2080.56 | 951.85 | 2.19x |
Inception V2 | pb | 74.33% | 73.97% | 0.49% | 1587.53 | 863.37 | 1.84x |
Inception V3 | pb | 76.72% | 76.75% | -0.03% | 1052.91 | 434.27 | 2.42x |
Inception V4 | pb | 80.13% | 80.27% | -0.18% | 707.41 | 234.38 | 3.02x |
Inception ResNet V2 | pb | 80.25% | 80.40% | -0.18% | 320.37 | 179.46 | 1.79x |
MobileNet V1 | pb | 71.79% | 70.96% | 1.18% | 4312.31 | 1512.59 | 2.85x |
MobileNet V2 | pb | 72.48% | 71.76% | 1.01% | 2287.77 | 1406.75 | 1.63x |
VGG16 | pb | 72.69% | 70.89% | 2.55% | 1367.34 | 207.41 | 6.59x |
VGG19 | pb | 72.67% | 71.01% | 2.33% | 1244.82 | 176.79 | 7.04x |
ResNetV2 50 | pb | 70.37% | 69.64% | 1.05% | 780.51 | 582.96 | 1.34x |
ResNetV2 101 | pb | 72.64% | 71.87% | 1.08% | 494.43 | 329.51 | 1.50x |
ResNetV2 152 | pb | 73.12% | 72.37% | 1.04% | 349.42 | 235.48 | 1.48x |
Densenet 161 | pb | 76.29% | 76.29% | 0.00% | 282.31 | 223.19 | 1.26x |
SSD ResNet50 V1 | pb | 37.91% | 38.00% | -0.24% | 139.49 | 30.99 | 4.50x |
SSD MobileNet V1 | pb | 23.00% | 23.13% | -0.57% | 1284.41 | 756.56 | 1.70x |
SSD ResNet50 v1 | ckpt | 37.88% | 38.00% | -0.31% | 139.56 | 27.79 | 5.02x |
SSD MobileNet v1 | ckpt | 22.96% | 23.13% | -0.71% | 1280.88 | 530.23 | 2.42x |
Faster R-CNN ResNet101 | pb | 30.32% | 30.39% | -0.22% | 161.19 | 23.80 | 6.77x |
Faster R-CNN ResNet50 | pb | 26.61% | 26.59% | 0.09% | 178.89 | 29.20 | 6.13x |
YOLOv3 | pb | 83.28% | 82.35% | 1.12% | 249.35 | 94.44 | 2.64x |
BERT large SQuAD | pb | 92.44 | 92.99 | -0.58% | 46.54 | 20.37 | 2.28x |
BERT large SQuAD (ONNX Model Zoo) | pb | 92.36 | 92.98 | -0.67% | 42.65 | 20.79 | 2.05x |
BERT base MRPC | ckpt | 85.78% | 86.52% | -0.85% | 390.36 | 212.96 | 1.83x |
VIT | pb | 81.39% | 81.92% | -0.64% | 230.91 | 142.24 | 1.62x |
PyTorch Models with Torch 2.2.1+cpu in PTQ Mode
Model | Example | Accuracy | Performance 1s4c14ins1bs Throughput(samples/sec) |
||||
---|---|---|---|---|---|---|---|
INT8 | FP32 | Accuracy Ratio [(INT8-FP32)/FP32] |
INT8 | FP32 | Performance Ratio [INT8/FP32] |
||
ResNet18 | static | 69.59% | 69.76% | -0.24% | 1989.72 | 600.45 | 3.31x |
ResNet50 | static | 75.98% | 76.15% | -0.21% | 1165.92 | 303.91 | 3.84x |
Inception V3 | static | 69.46% | 69.52% | -0.09% | 953.35 | 302.52 | 3.15x |
ResNeSt50 | static | 80.76% | 81.04% | -0.35% | 365.44 | 39.66 | 9.21x |
ResNeXt101_32x8d | static | 78.92% | 79.31% | -0.49% | 548.78 | 104.14 | 5.27x |
Efficientnet_b0 | static | 76.94% | 77.67% | -0.94% | 636.62 | 566.42 | 1.12x |
Efficientnet_b3 | static | 77.78% | 78.54% | -0.98% | 471.61 | 358.59 | 1.32x |
Peleenet | static | 71.83% | 72.10% | -0.37% | 790.03 | 504.44 | 1.57x |
YOLO V3 | static | 55.10% | 54.93% | 0.31% | 162.98 | 57.37 | 2.84x |
SSD ResNet34 | static | 19.48 | 19.63 | -0.77% | 137.89 | 11.61 | 11.88x |
Roberta base MRPC | static | 92.97% | 93.59% | -0.66% | 390.95 | 175.44 | 2.23x |
CamemBERT base MRPC | static | 88.47% | 89.28% | -0.91% | 393.70 | 174.51 | 2.26x |
DistilBERT base MRPC | static | 90.30% | 90.27% | 0.04% | 783.37 | 344.91 | 2.27x |
DistilBERT base MRPC | dynamic | 90.02% | 90.27% | -0.28% | 684.20 | 344.68 | 1.99x |
ALBERT base MRPC | static | 92.63% | 92.63% | 0.00% | 312.48 | 155.60 | 2.01x |
Funnel MRPC | static | 91.94% | 92.25% | -0.34% | 281.83 | 179.04 | 1.57x |
Xlm Roberta MRPC | static | 89.46% | 88.62% | 0.94% | 395.91 | 173.59 | 2.28x |
Xlm Roberta MRPC | dynamic | 88.54% | 88.24% | 0.35% | 373.90 | 173.91 | 2.15x |
BERT base MRPC | static | 89.56% | 90.42% | -0.95% | 405.08 | 176.38 | 2.30x |
BERT base COLA | static | 52.86% | 53.39% | -0.99% | 395.37 | 177.37 | 2.23x |
BERT base STSB | static | 87.39% | 88.05% | -0.74% | 396.71 | 173.80 | 2.28x |
BERT base SST-2 | static | 91.97% | 92.32% | -0.37% | 393.20 | 173.65 | 2.26x |
BERT large COLA | static | 62.80% | 63.35% | -0.88% | 136.55 | 51.82 | 2.64x |
BERT base RTE | static | 73.29% | 72.56% | 1.00% | 377.79 | 173.84 | 2.17x |
BERT large MRPC | static | 89.36% | 90.38% | -1.12% | 136.72 | 51.87 | 2.64x |
BERT large QNLI | static | 90.79% | 91.54% | -0.82% | 391.67 | 173.82 | 2.25x |
BERT large RTE | static | 73.29% | 74.01% | -0.98% | 135.20 | 51.90 | 2.61x |
BERT large RTE | dynamic | 73.29% | 74.01% | -0.98% | 117.14 | 51.74 | 2.26x |
BERT large SQuAD | static | 92.29 | 93.16 | -0.93% | 32.61 | 16.88 | 1.93x |
lvwerra/pegasus-samsum | static | 42.32 | 42.67 | -0.82% | 93.80 | 37.59 | 2.50x |
PyTorch Models with Torch 2.2.1+cpu in QAT Mode
Model | Example | Accuracy | Performance 1s4c14ins1bs Throughput(samples/sec) |
||||
---|---|---|---|---|---|---|---|
INT8 | FP32 | Accuracy Ratio [(INT8-FP32)/FP32] |
INT8 | FP32 | Performance Ratio [INT8/FP32] |
||
ResNet18 | static | 69.74% | 69.76% | -0.03% | 1981.66 | 598.39 | 3.31x |
ResNet50 | static | 76.03% | 76.15% | -0.15% | 1095.95 | 298.92 | 3.67x |
ResNeXt101_32x8d | static | 79.31% | 79.31% | 0.00% | 549.02 | 103.72 | 5.29x |
BERT base MRPC | static | 89.40% | 90.40% | -1.11% | 375.61 | 176.15 | 2.13x |
PyTorch Models with Torch 2.0.1+cpu in WOQ Mode
Model name | Configuration | Lambada_openai | Hellaswag | Winogrande | Piqa | Average [Mean accuracy of previous four tasks] |
Wikitext | |
---|---|---|---|---|---|---|---|---|
Accuracy | Accuracy | Accuracy | Accuracy | Accuracy | Accuracy Ratio [INT4/FP32] |
Word_perplexity | ||
EleutherAI/gpt-j-6b | FP32 | 0.6831 | 0.4954 | 0.6409 | 0.7541 | 0.6434 | / | 10.8816 |
GPTQ W4G128Asym |
0.679 | 0.4895 | 0.6433 | 0.7476 | 0.6399 | 0.9945 | 11.0999 | |
GPTQ W4G32Asym |
0.6829 | 0.4923 | 0.6401 | 0.7486 | 0.6410 | 0.9963 | 11.0141 | |
GPTQ W4G128Sym |
0.685 | 0.4907 | 0.6361 | 0.7443 | 0.6390 | 0.9932 | 11.1498 | |
GPTQ W4G32Sym |
0.6911 | 0.4899 | 0.6448 | 0.7497 | 0.6439 | 1.0008 | 11.0927 | |
facebook/opt-6.7b | FP32 | 0.6769 | 0.5049 | 0.6543 | 0.7628 | 0.6497 | / | 12.2862 |
GPTQ W4G32Asym |
0.6804 | 0.4984 | 0.6535 | 0.7568 | 0.6473 | 0.9962 | 12.4193 | |
GPTQ W4G32Sym |
0.6885 | 0.4973 | 0.6433 | 0.753 | 0.6455 | 0.9935 | 12.4607 | |
decapoda-research/llama-7b-hf | FP32 | 0.7361 | 0.5642 | 0.6709 | 0.7835 | 0.6887 | / | 9.4202 |
GPTQ W4G32Asym |
0.7244 | 0.5603 | 0.6614 | 0.7835 | 0.6824 | 0.9909 | 9.5881 | |
decapoda-research/llama-13b-hf | FP32 | 0.7627 | 0.5911 | 0.7009 | 0.7878 | 0.7106 | / | 8.212 |
GPTQ W4G128Asym |
0.7518 | 0.5843 | 0.6961 | 0.7911 | 0.7058 | 0.9932 | 8.4319 | |
GPTQ W4G32Asym |
0.7572 | 0.5898 | 0.7056 | 0.7894 | 0.7105 | 0.9998 | 8.3429 | |
GPTQ W4G128Sym |
0.7596 | 0.5841 | 0.6977 | 0.7905 | 0.7080 | 0.9963 | 8.4916 | |
decapoda-research/llama-30b-hf | FP32 | 0.7759 | 0.6266 | 0.7277 | 0.8096 | 0.7350 | / | 6.2384 |
GPTQ W4G128Asym |
0.778 | 0.624 | 0.7269 | 0.8047 | 0.7334 | 0.9979 | 6.4237 | |
GPTQ W4G32Asym |
0.7706 | 0.6239 | 0.7285 | 0.8058 | 0.7322 | 0.9963 | 6.4697 | |
GPTQ W4G128Sym |
0.7836 | 0.6195 | 0.7269 | 0.8047 | 0.7337 | 0.9983 | 6.5604 | |
meta-llama/Llama-2-7b-chat-hf | FP32 | 0.7058 | 0.5732 | 0.648 | 0.7715 | 0.6746 | / | 11.7107 |
GPTQ W4G128Asym |
0.6982 | 0.5637 | 0.6527 | 0.7704 | 0.6713 | 0.9950 | 11.9702 | |
GPTQ W4G32Asym |
0.6953 | 0.5682 | 0.6575 | 0.7758 | 0.6742 | 0.9994 | 11.9317 | |
meta-llama/Llama-2-7b-hf | FP32 | 0.7392 | 0.567 | 0.6709 | 0.7835 | 0.6902 | / | 8.7911 |
GPTQ W4G32Asym |
0.7353 | 0.5642 | 0.6622 | 0.7829 | 0.6862 | 0.9942 | 8.9635 | |
GPTQ W4G128Sym |
0.7246 | 0.5617 | 0.6756 | 0.7797 | 0.6854 | 0.9931 | 9.2799 | |
meta-llama/Llama-2-13b-chat-hf | FP32 | 0.7312 | 0.6059 | 0.7103 | 0.7835 | 0.7077 | / | 10.2213 |
GPTQ W4G128Asym |
0.7273 | 0.6018 | 0.7088 | 0.7742 | 0.7030 | 0.9934 | 2538.083 | |
GPTQ W4G32Asym |
0.7283 | 0.6053 | 0.7024 | 0.7764 | 0.7031 | 0.9935 | 1889.374 | |
GPTQ W4G128Sym |
0.727 | 0.5997 | 0.7024 | 0.778 | 0.7018 | 0.9916 | 2504.497 | |
meta-llama/Llama-2-13b-hf | FP32 | 0.7677 | 0.5972 | 0.6961 | 0.7878 | 0.7122 | / | 7.8984 |
GPTQ W4G128Asym |
0.7627 | 0.5933 | 0.689 | 0.7851 | 0.7075 | 0.9934 | 1556.448 | |
GPTQ W4G32Asym |
0.7675 | 0.5934 | 0.6977 | 0.7856 | 0.7111 | 0.9984 | 1514.927 | |
GPTQ W4G128Sym |
0.7566 | 0.5899 | 0.7032 | 0.7856 | 0.7088 | 0.9953 | 1374.728 | |
bigscience/bloom-7b1 | FP32 | 0.5764 | 0.4628 | 0.6456 | 0.7269 | 0.6029 | / | 30.6438 |
GPTQ W4G32Sym |
0.5799 | 0.4542 | 0.6361 | 0.7312 | 0.6004 | 0.9957 | 32.0626 | |
bigscience/bloomz-7b1 | FP32 | 0.5593 | 0.4789 | 0.6527 | 0.7628 | 0.6134 | / | 51.7432 |
GPTQ W4G32Asym |
0.5525 | 0.4731 | 0.6504 | 0.7617 | 0.6094 | 0.9935 | 52.7828 | |
databricks/dolly-v1-6b | FP32 | 0.6866 | 0.5098 | 0.6433 | 0.7622 | 0.6505 | / | 11.3242 |
GPTQ W4G128Asym |
0.6878 | 0.5058 | 0.6393 | 0.7633 | 0.6491 | 0.9978 | 11.5514 | |
GPTQ W4G32Asym |
0.6864 | 0.5084 | 0.6519 | 0.7568 | 0.6509 | 1.0006 | 11.4728 | |
GPTQ W4G128Sym |
0.6876 | 0.5045 | 0.6433 | 0.7541 | 0.6474 | 0.9952 | 11.6474 | |
databricks/dolly-v2-7b | FP32 | 0.6379 | 0.5282 | 0.614 | 0.7448 | 0.6312 | / | 16.161 |
GPTQ W4G32Asym |
0.6377 | 0.5228 | 0.5991 | 0.7448 | 0.6261 | 0.9919 | 16.4096 | |
EleutherAI/gpt-neo-2.7b | FP32 | 0.6224 | 0.4271 | 0.577 | 0.722 | 0.5871 | / | 13.9359 |
GPTQ W4G128Asym |
0.6123 | 0.4227 | 0.5738 | 0.7203 | 0.5823 | 0.9917 | 14.3377 | |
GPTQ W4G32Asym |
0.615 | 0.4259 | 0.5714 | 0.7247 | 0.5843 | 0.9951 | 14.2083 | |
GPTQ W4G32Sym |
0.6154 | 0.4208 | 0.5777 | 0.7198 | 0.5834 | 0.9937 | 14.3121 | |
EleutherAI/gpt-neox-20b | FP32 | 0.7233 | 0.5359 | 0.6614 | 0.7753 | 0.6740 | / | 9.195 |
GPTQ W4G128Asym |
0.7186 | 0.5328 | 0.6535 | 0.7699 | 0.6687 | 0.9922 | 9.3463 | |
GPTQ W4G32Asym |
0.7268 | 0.533 | 0.659 | 0.7715 | 0.6726 | 0.9979 | 9.2897 | |
mosaicml/mpt-7b | FP32 | 0.7056 | 0.5718 | 0.6859 | 0.7927 | 0.6890 | / | 9.9324 |
GPTQ W4G128Asym |
0.7006 | 0.5655 | 0.6803 | 0.7965 | 0.6857 | 0.9952 | 10.1515 | |
mosaicml/mpt-7b-chat | FP32 | 0.655 | 0.5752 | 0.6748 | 0.7845 | 0.6724 | / | 13.5951 |
GPTQ W4G128Asym |
0.6472 | 0.5716 | 0.6685 | 0.784 | 0.6678 | 0.9932 | 13.8539 | |
mosaicml/mpt-7b-instruct | FP32 | 0.6918 | 0.5819 | 0.678 | 0.7927 | 0.6861 | / | 10.8863 |
GPTQ W4G128Asym |
0.6864 | 0.5765 | 0.6827 | 0.7873 | 0.6832 | 0.9958 | 11.1451 | |
mosaicml/mpt-7b-storywriter | FP32 | 0.693 | 0.5477 | 0.663 | 0.784 | 0.6719 | / | 9.9125 |
GPTQ W4G128Asym |
0.6854 | 0.5443 | 0.6661 | 0.7813 | 0.6693 | 0.9961 | 10.1137 | |
tiiuae/falcon-rw-7b | FP32 | 0.6604 | 0.5419 | 0.6598 | 0.7753 | 0.6594 | / | 11.7616 |
GPTQ W4G128Asym |
0.6484 | 0.5369 | 0.6575 | 0.7807 | 0.6559 | 0.9947 | 11.9411 | |
GPTQ W4G32Asym |
0.6571 | 0.5398 | 0.6582 | 0.7764 | 0.6579 | 0.9978 | 11.8809 | |
GPTQ W4G128Sym |
0.652 | 0.535 | 0.6575 | 0.7682 | 0.6532 | 0.9906 | 12.0048 | |
tiiuae/falcon-7b-instruct | FP32 | 0.6437 | 0.5177 | 0.6669 | 0.7824 | 0.6527 | / | 14.5053 |
GPTQ W4G128Asym |
0.6301 | 0.5142 | 0.6654 | 0.7835 | 0.6483 | 0.9933 | 14.8146 | |
GPTQ W4G32Asym |
0.6377 | 0.517 | 0.6598 | 0.7807 | 0.6488 | 0.9941 | 14.6953 |
ONNX Models with ONNX Runtime 1.17.1
Model | Example | Accuracy | Performance 1s4c14ins1bs Throughput(samples/sec) |
||||
---|---|---|---|---|---|---|---|
INT8 | FP32 | Accuracy Ratio [(INT8-FP32)/FP32] |
INT8 | FP32 | Performance Ratio [INT8/FP32] |
||
ResNet50 V1.5 | qlinearops | 72.16% | 72.29% | -0.18% | 1666.73 | 734.16 | 2.27x |
ResNet50 V1.5 | qdq | 72.19% | 72.29% | -0.15% | 1658.10 | 734.33 | 2.26x |
ResNet50 V1.5 MLPerf | qlinearops | 76.15% | 76.46% | -0.41% | 1495.15 | 733.59 | 2.04x |
ResNet50 V1.5 MLPerf | qdq | 76.12% | 76.46% | -0.44% | 1661.90 | 732.04 | 2.27x |
ResNet50 V1.5 (ONNX Model Zoo) | qlinearops | 74.77% | 74.99% | -0.29% | 1713.86 | 767.91 | 2.23x |
ResNet50 V1.5 (ONNX Model Zoo) | qdq | 74.48% | 74.99% | -0.67% | 1747.21 | 770.14 | 2.27x |
MobileNet V2 | qlinearops | 65.55% | 66.89% | -2.01% | 7519.95 | 4430.84 | 1.70x |
MobileNet V2 | qdq | 65.60% | 66.89% | -1.93% | 7572.97 | 4413.58 | 1.72x |
MobileNet V2 (ONNX Model Zoo) | qlinearops | 68.51% | 69.48% | -1.41% | 7190.26 | 4019.16 | 1.79x |
VGG16 | qlinearops | 66.55% | 66.69% | -0.20% | 613.47 | 170.95 | 3.59x |
VGG16 | qdq | 66.62% | 66.69% | -0.11% | 611.78 | 186.21 | 3.29x |
VGG16 (ONNX Model Zoo) | qlinearops | 72.37% | 72.40% | -0.04% | 619.00 | 184.35 | 3.36x |
VGG16 (ONNX Model Zoo) | qdq | 72.37% | 72.40% | -0.03% | 623.02 | 172.27 | 3.62x |
MobileNet V3 MLPerf | qlinearops | 75.51% | 75.74% | -0.30% | 5711.04 | 2584.17 | 2.21x |
MobileNet V3 MLPerf | qdq | 75.51% | 75.74% | -0.30% | 6136.36 | 2630.21 | 2.33x |
ShuffleNet V2 (ONNX Model Zoo) | qlinearops | 66.13% | 66.36% | -0.36% | 6820.89 | 3686.46 | 1.85x |
GoogleNet (ONNX Model Zoo) | qlinearops | 67.69% | 67.79% | -0.14% | 1971.18 | 1120.08 | 1.76x |
GoogleNet (ONNX Model Zoo) | qdq | 67.64% | 67.79% | -0.22% | 1838.28 | 1142.35 | 1.61x |
SqueezeNet (ONNX Model Zoo) | qlinearops | 56.49% | 56.87% | -0.67% | 10163.13 | 5771.89 | 1.76x |
SqueezeNet (ONNX Model Zoo) | qdq | 56.33% | 56.87% | -0.94% | 10339.14 | 6002.84 | 1.72x |
CaffeNet (ONNX Model Zoo) | qlinearops | 56.26% | 56.30% | -0.07% | 2805.96 | 1077.80 | 2.60x |
CaffeNet (ONNX Model Zoo) | qdq | 56.18% | 56.30% | -0.21% | 4351.65 | 822.71 | 5.29x |
AlexNet (ONNX Model Zoo) | qlinearops | 54.73% | 54.79% | -0.10% | 2169.83 | 893.06 | 2.43x |
AlexNet (ONNX Model Zoo) | qdq | 54.74% | 54.79% | -0.08% | 2232.07 | 841.46 | 2.65x |
ZFNet (ONNX Model Zoo) | qlinearops | 55.83% | 55.96% | -0.24% | 921.09 | 525.21 | 1.75x |
ZFNet (ONNX Model Zoo) | qdq | 55.82% | 55.96% | -0.24% | 925.69 | 534.05 | 1.73x |
Inception V1 (ONNX Model Zoo) | qlinearops | 67.23% | 67.24% | -0.02% | 1862.37 | 1161.55 | 1.60x |
Inception V1 (ONNX Model Zoo) | qdq | 67.19% | 67.24% | -0.07% | 1956.47 | 1262.64 | 1.55x |
EfficientNet (ONNX Model Zoo) | qlinearops | 77.02% | 77.11% | -0.12% | 2793.23 | 1383.39 | 2.02x |
BEIT | qlinearops | 85.07 | 85.28 | -0.25% | 206.50 | 128.13 | 1.61x |
SSD (ONNX Model Zoo) | qdq | 18.62% | 18.98% | -1.90% | 56.97 | 14.57 | 3.91x |
DUC (ONNX Model Zoo) | qlinearops | 81.62% | 81.92% | -0.37% | 8.76 | 5.03 | 1.74x |
Ultra Face (ONNX Model Zoo) | qlinearops | 83.33% | 83.65% | -0.38% | 8780.52 | 1920.30 | 4.57x |
Emotion FERPlus (ONNX Model Zoo) | qlinearops | 7.94% | 8.00% | -0.70% | 6360.85 | 3067.12 | 2.07x |
ArcFace (ONNX Model Zoo) | qlinearops | 99.82% | 99.80% | 0.02% | 449.50 | 235.01 | 1.91x |
BERT base MRPC | qlinearops | 85.78% | 86.03% | -0.28% | 511.36 | 225.15 | 2.27x |
BERT base MRPC | qdq | 85.78% | 86.03% | -0.28% | 484.44 | 222.43 | 2.18x |
BERT base MRPC | integerops | 85.78% | 86.03% | -0.28% | 728.48 | 222.35 | 3.28x |
DistilBERT base MRPC | qdq | 85.05% | 84.56% | 0.58% | 635.93 | 405.58 | 1.57x |
DistilBERT base MRPC | integerops | 85.29% | 84.56% | 0.87% | 1324.26 | 405.48 | 3.27x |
Roberta base MRPC | qdq | 88.24% | 89.95% | -1.91% | 484.00 | 223.37 | 2.17x |
BERT SQuAD (ONNX Model Zoo) | integerops | 80.29 | 80.67 | -0.47% | 244.93 | 99.29 | 2.47x |
BERT base cased MRPC (HuggingFace) | qlinearops | 90.21% | 90.42% | -0.23% | 440.17 | 214.15 | 2.06x |
BERT base uncased MRPC (HuggingFace) | integerops | 89.58% | 90.42% | -0.93% | 715.22 | 201.24 | 3.55x |
Roberta base MRPC (HuggingFace) | qlinearops | 91.00% | 91.38% | -0.41% | 434.48 | 214.20 | 2.03x |
Roberta base MRPC (HuggingFace) | integerops | 90.85% | 91.38% | -0.58% | 714.20 | 213.54 | 3.34x |
XLM Roberta base MRPC (HuggingFace) | qlinearops | 89.37% | 90.10% | -0.81% | 339.02 | 214.41 | 1.58x |
XLM Roberta base MRPC (HuggingFace) | integerops | 89.66% | 90.10% | -0.50% | 406.04 | 215.12 | 1.89x |
Camembert base MRPC (HuggingFace) | integerops | 89.19% | 89.28% | -0.10% | 712.67 | 217.68 | 3.27x |
MiniLM L12 H384 uncased MRPC (HuggingFace) | qlinearops | 90.13% | 90.97% | -0.93% | 1209.98 | 588.93 | 2.05x |
MiniLM L12 H384 uncased MRPC (HuggingFace) | integerops | 91.07% | 90.97% | 0.10% | 1268.43 | 588.05 | 2.16x |
DistilBERT base uncased SST-2 (HuggingFace) | qlinearops | 90.71% | 91.06% | -0.38% | 1253.85 | 399.52 | 3.14x |
DistilBERT base uncased SST-2 (HuggingFace) | integerops | 90.25% | 91.06% | -0.88% | 925.68 | 399.54 | 2.32x |
MiniLM L6 H384 uncased SST-2 (HuggingFace) | qlinearops | 89.45% | 90.14% | -0.76% | 2209.72 | 1139.62 | 1.94x |
MiniLM L6 H384 uncased SST-2 (HuggingFace) | integerops | 89.91% | 90.14% | -0.26% | 2365.97 | 1137.32 | 2.08x |
BERT base cased MRPC (HuggingFace) | qlinearops | 87.70% | 88.29% | -0.67% | 497.73 | 214.32 | 2.32x |
BERT base cased MRPC (HuggingFace) | integerops | 88.19% | 88.29% | -0.12% | 718.26 | 214.32 | 3.35x |
Electra small discriminator MRPC (HuggingFace) | qlinearops | 89.92% | 89.83% | 0.09% | 1951.07 | 1142.89 | 1.71x |
Electra small discriminator MRPC (HuggingFace) | integerops | 89.27% | 89.83% | -0.63% | 2198.93 | 1129.20 | 1.95x |
BERT mini MRPC (HuggingFace) | qlinearops | 86.21% | 86.52% | -0.35% | 5814.17 | 3388.02 | 1.72x |
BERT mini MRPC (HuggingFace) | integerops | 86.16% | 86.52% | -0.41% | 6396.89 | 3445.06 | 1.86x |
BART large MRPC (HuggingFace) | integerops | 92.36% | 91.20% | 1.28% | 126.31 | 52.28 | 2.42x |
Spanbert SQuAD (HuggingFace) | qlinearops | 91.14 | 91.98 | -0.91% | 75.86 | 43.48 | 1.74x |
Spanbert SQuAD (HuggingFace) | integerops | 91.40 | 91.98 | -0.63% | 92.24 | 43.51 | 2.12x |
Bert base multilingual cased SQuAD (HuggingFace) | qlinearops | 88.42 | 89.13 | -0.79% | 79.06 | 43.45 | 1.82x |
Bert base multilingual cased SQuAD (HuggingFace) | integerops | 88.70 | 89.13 | -0.48% | 93.03 | 43.23 | 2.15x |
DistilBert base uncased SQuAD (HuggingFace) | qlinearops | 86.33 | 86.86 | -0.62% | 118.68 | 68.43 | 1.73x |
DistilBert base uncased SQuAD (HuggingFace) | integerops | 86.05 | 86.86 | -0.94% | 186.33 | 68.41 | 2.72x |
BERT large uncased whole word masking SQuAD (HuggingFace) | qlinearops | 92.34 | 93.16 | -0.88% | 28.67 | 13.12 | 2.19x |
BERT large uncased whole word masking SQuAD (HuggingFace) | integerops | 92.99 | 93.16 | -0.18% | 32.32 | 13.14 | 2.46x |
Roberta large SQuAD v2 (HuggingFace) | integerops | 89.04 | 89.02 | 0.02% | 32.37 | 13.40 | 2.42x |
LayoutLMv3 FUNSD (HuggingFace) | qlinearops | 89.66% | 90.49% | -0.91% | 47.60 | 27.28 | 1.74x |
LayoutLMv3 FUNSD (HuggingFace) | integerops | 89.95% | 90.49% | -0.59% | 56.26 | 27.43 | 2.05x |
LayoutLMv2 (HuggingFace) | qlinearops | 80.95% | 81.17% | -0.27% | 64.14 | 38.91 | 1.65x |
LayoutLMv2 (HuggingFace) | integerops | 80.60% | 81.17% | -0.71% | 67.01 | 38.84 | 1.73x |
ONNX Models with ONNX Runtime 1.15.0 in WOQ Mode
Model name | Configuration | Lambada_openai | Accuracy Ratio [INT4/FP32] |
|
---|---|---|---|---|
Accuracy | Perplexity | |||
meta-llama/Llama-2-7b-chat-hf | FP32 | 0.7058 | 3.2788 | / |
GPTQ W4G32Asym |
0.7002 | 3.4124 | 0.9921 | |
meta-llama/Llama-2-7b-hf | FP32 | 0.7392 | 3.3950 | / |
GPTQ W4G32Asym |
0.7312 | 3.5711 | 0.9892 | |
meta-llama/Llama-2-13b-chat-hf | FP32 | 0.7312 | 2.9163 | / |
GPTQ W4G128Asym |
0.7240 | 2.9945 | 0.9902 | |
meta-llama/Llama-2-13b-hf | FP32 | 0.7677 | 3.0438 | / |
GPTQ W4G128Asym |
0.7634 | 3.1186 | 0.9944 | |
GPTQ W4G32Asym |
0.7615 | 3.1276 | 0.9919 | |
meta-llama/Llama-2-70b-chat-hf | FP32 | 0.7543 | 2.6181 | / |
RTN W4G32Asym |
0.7518 | 2.6496 | 0.9967 | |
meta-llama/Llama-2-70b-hf | FP32 | 0.7964 | 2.6612 | / |
RTN W4G32Sym |
0.7941 | 2.7243 | 0.9971 |
Validated Pruning Examples
Model | TaskDataset | Dense Accuracy Sparse Accuracy |
Relative Drop | Sparsity ratio Sparsity Pattern |
Comments Balanced or unbalanced ratio |
---|---|---|---|---|---|
Bert-Mini | question answeringSQuAD-v1.1 | f1=76.87f1=76.2 | -0.80% | 80%structured 4x1 | snip momentumunbalanced |
Bert-Mini | question answeringSQuAD-v1.1 | f1=76.87f1=76.2 | -0.80% | 80%structured 4x1 | snip momentumunbalanced |
Bert-Mini | question answeringSQuAD-v1.1 | f1=76.87f1=77.62 | +0.98% | 50%structured 2:4 | snip momentumbalanced |
Distilbert-base-uncased | question answeringSQuAD-v1.1 | f1=86.90f1=86.15 | -0.86% | 80%structured 4x1 | snip momentumunbalanced |
Distilbert-base-uncased | question answeringSQuAD-v1.1 | f1=86.90f1=87.50 | +0.69% | 50%structured 2:4 | snip momentumbalanced |
Bert-base-uncased | question answeringSQuAD-v1.1 | f1=88.59f1=87.78 | -0.92% | 80%structured 4x1 | snip momentumunbalanced |
Bert-base-uncased | question answeringSQuAD-v1.1 | f1=88.59f1=89.40 | +0.91% | 50%structured 2:4 | snip momentumbalanced |
Bert-large | question answeringSQuAD-v1.1 | f1=91.23f1=90.91 | -0.35% | 80%structured 4x1 | snip momentumunbalanced |
Bert-large | question answeringSQuAD-v1.1 | f1=91.23f1=91.67 | +0.48% | 50%structured 2:4 | snip momentumbalanced |
Bert-Mini | text classificationMRPC | f1=87.52f1=87.22 | -0.34% | 90%structured 4x1 | snip momentumunbalanced |
Bert-Mini | text classificationMRPC | f1=87.52f1=87.33 | -0.22% | 90%structured 4x1 | snip momentumbalanced |
Bert-Mini | text classificationMRPC | f1=87.52f1=86.89 | -0.72% | 50%structured 2:4 | snip momentumbalanced |
Bert-Mini | text classificationMRPC | f1=87.52f1=86.8 | -0.83% | 60%structured per channel | snip momentumunbalanced |
Distilbert-base-uncased | text classificationMRPC | f1=90.26f1=89.85 | -0.46% | 90%structured 4x1 | snip momentumunbalanced |
Distilbert-base-uncased | text classificationMRPC | f1=90.26f1=90.88 | +0.69% | 50%structured 2:4 | snip momentumbalanced |
Bert-Mini | text classificationSST-2 | accuracy=87.61accuracy=86.92 | -0.79% | 90%structured 4x1 | snip momentumunbalanced |
Bert-Mini | text classificationSST-2 | accuracy=87.61accuracy=87.73 | +0.14% | 50%structured 2:4 | snip momentumbalanced |
Bert-Mini | text classificationSST-2 | accuracy=87.61accuracy=86.92 | -0.79% | 50%structured per channel | snip momentumunbalanced |
ResNet50 | image recognitionImageNet | top1 acc = 78.95top1 acc = 80.10 | -1.43% | 75%structured 2x1 | snip momentumunbalanced |
YOLO-v5s6 | object detectionCOCO | AP0.50:0.95/AP0.50=0.404/0.6AP0.50:0.95/AP0.50=0.393/0.584 | -2.72% | 80%unstructured | snip momentumunbalanced |
Bert-Large | question answeringSQuAD-v1.1 | f1=91.34f1=90.7 | -0.07% | 80%structured 2x1 | group lassounbalanced |
Bert-Base | text classificationMNLI | [m, mm] = [84.57, 84.79][m, mm] = [82.45, 83.27] | [-2.51%, -1.80%] | 70%unstructured | Prune once for allbalanced |
Bert-Base | text classificationMNLI | [m, mm] = [84.57, 84.79][m, mm] = [83.20, 84.11] | [-1.62%, -0.80%] | 50%structured 1:2 | Prune once for allbalanced |
Bert-Base | text classificationSST-2 | accuracy = 92.32accuracy = 91.51 | -0.88% | 70%unstructured | Prune once for allbalanced |
Bert-Base | text classificationSST-2 | accuracy = 92.32accuracy = 92.20 | -0.13% | 50%structured 1:2 | Prune once for allbalanced |
Bert-Base | text classificationSST-2 | accuracy = 92.32accuracy = 91.97 | -0.38% | 20%unstructured | gradient sensitivitybalanced |
Bert-Base | text classificationQQP | [accuracy, f1] = [91.10, 88.05][accuracy, f1] = [90.48, 87.06] | [-0.68%, -1.12%] | 70%unstructured | Prune once for allbalanced |
Bert-Base | text classificationQQP | [accuracy, f1] = [91.10, 88.05][accuracy, f1] = [90.92, 87.78] | [-0.20%, -0.31%] | 50%structured 1:2 | Prune once for allbalanced |
Bert-Base | text classificationQNLI | accuracy = 91.54accuracy = 90.39 | -1.26% | 70%unstructured | Prune once for allbalanced |
Bert-Base | text classificationQNLI | accuracy = 91.54accuracy = 90.87 | -0.73% | 50%structured 1:2 | Prune once for allbalanced |
Bert-Base | question answering | [em, f1] = [79.34, 87.10][em, f1] = [77.27, 85.75] | [-2.61%, -1.54%] | 70%unstructured | Prune once for allbalanced |
Bert-Base | question answering | [em, f1] = [79.34, 87.10][em, f1] = [78.03, 86.50] | [-1.65%, -0.69%] | 50%structured 1:2 | Prune once for allbalanced |
Validated Knowledge Distillation Examples
Example Name | Dataset | Student (Metrics) |
Teacher (Metrics) |
Student With Distillation (Metrics Improvement) |
Student With Distributed Distillation (Metrics Improvement) |
---|---|---|---|---|---|
MobileNet example | CIFAR-10 | MobileNetV2-0.35 (0.7965 ACC) |
WideResNet40-2 (0.9522 ACC) |
0.8178 ACC (0.0213 ACC) |
0.8235 ACC (0.027 ACC) |
CNN example | CIFAR-100 | CNN-2 (0.5494 ACC) |
CNN-10 (0.7153 ACC) |
0.5540 ACC (0.0046 ACC) |
0.5523 ACC (0.0029 ACC) |
VGG example | CIFAR-100 | VGG-8-BN (0.7022 ACC) |
VGG-13-BN (0.7415 ACC) |
0.7025 ACC (0.0003 ACC) |
NA |
ResNet example | ImageNet | ResNet18 (0.6739 ACC) |
ResNet50 (0.7399 ACC) |
0.6845 ACC (0.0106 ACC) |
NA |
BlendCnn example | MRPC | BlendCnn (0.7034 ACC) |
BERT-Base (0.8382 ACC) |
0.7034 ACC (0 ACC) |
NA |
BiLSTM example | SST-2 | BiLSTM (0.8314 ACC) |
RoBERTa-Base (0.9403 ACC) |
0.9048 ACC (0.0734 ACC) |
NA |
DistilBERT example | SQuAD | DistilBERT (0.7323/0.8256 EM/F1) |
BERT-Base (0.8084/0.8814 EM/F1) |
0.7442/0.8371 EM/F1 (0.0119/0.0115 EM/F1) |
NA |
TinyBERT example | MNLI | TinyBERT (0.8018/0.8044 m/mm) |
BERT-Base (0.8363/0.8411 m/mm) |
0.8025/0.8074 m/mm (0.0007/0.0030 m/mm) |
NA |
BERT-3 example | QQP | BERT-3 (0.8626/0.8213 EM/F1) |
BERT-Base (0.9091/0.8782 EM/F1) |
0.8684/0.8259 EM/F1 (0.0058/0.0046 EM/F1) |
NA |
DistilRoBERTa example | COLA | DistilRoBERTa (0.6057 ACC) |
RoBERTa-Large (0.6455 ACC) |
0.6187 ACC (0.0130 ACC) |
NA |
Validated ONNX QDQ INT8 Models on Multiple Hardware through ONNX Runtime
Model (ONNX QDQ) | AWS c6i.2xlarge (Intel) CPU Execution Provider |
AWS c6a.2xlarge (AMD) CPU Execution Provider |
AWS c6g.2xlarge (ARM) CPU Execution Provider |
NVidia A100 CUDA Execution Provider |
---|---|---|---|---|
ResNet50 | 74.76% | 68.95% | 74.76% | 74.75% |
BERT-base | 85.54% | 84.56% | 85.54% | 84.31% |
ResNet50 V1.5 | 72.20% | 67.70% | 72.20% | 72.29% |
MobileNet V2 | 65.82% | 58.56% | 65.83% | 65.63% |
SSD MobileNet V1 | 22.45% | 16.53% | 22.45% | 22.35% |
DistilBERT base MRPC | 84.56% | 83.82% | 84.56% | 84.56% |
SqueezeNet | 56.54% | 53.52% | 56.54% | 56.55% |
SSD | 18.63% | 18.54% | 18.63% | 18.61% |
AlexNet | 54.71% | 47.06% | 54.71% | 54.79% |
CaffeNet | 56.25% | 52.35% | 56.27% | 56.24% |
GoogleNet | 67.73% | 63.56% | 67.72% | 67.76% |
ZFNet | 55.86% | 45.09% | 55.86% | 55.89% |
Inception V1 | 67.21% | 63.03% | 67.20% | 67.21% |
SSD MobileNet V1 (ONNX Model Zoo) | 22.86% | 16.94% | 22.80% | 22.87% |
Mobile bert MRPC | 85.54% | 84.56% | 85.54% | 85.54% |
Roberta base MRPC | 89.46% | 90.44% | 89.71% | 89.71% |
ResNet50 V1.5 MLPerf | 76.14% | 72.80% | 76.14% | 76.17% |
VGG16 | 66.69% | 64.25% | 66.69% | 66.64% |
VGG16 (ONNX Model Zoo) | 72.31% | 69.35% | 72.32% | 72.34% |
MobileNet V3 MLPerf | 75.57% | 70.78% | 75.56% | 75.52% |
EfficientNet | 77.61% | 76.52% | 77.56% | 77.60% |
MobileNet V2 (ONNX Model Zoo) | 68.51% | 62.48% | 68.58% | 68.48% |
ShuffleNet V2 | 66.12% | 58.41% | 66.11% | 66.11% |