neural_compressor.data.datasets.dataset
This is the base class for each framework.
Attributes
The datasets supported by neural_compressor, it's model specific and can be configured by yaml file. |
Classes
The base class of Tensorflow datasets class. |
|
The base class of PyTorch datasets class. |
|
The base class of MXNet datasets class. |
|
The base class of ONNXRT QLinear datasets class. |
|
The base class of ONNXRT IT datasets class. |
|
The base class for PyTorch and MXNet frameworks. |
|
The Helper class for PytorchMxnetWrapDataset. |
|
A base class for all framework datasets. |
|
The base class of dataset. |
|
An iterable Dataset. |
|
The CIFAR10 and CIFAR100 database. |
|
The PyTorch datasets for CIFAR10. |
|
The MXNet datasets for CIFAR10. |
|
The Tensorflow datasets for CIFAR10. |
|
CIFAR100 database. |
|
The PyTorch datasets for CIFAR100. |
|
The MXNet datasets for CIFAR100. |
|
The Tensorflow datasets for CIFAR100. |
|
Modified National Institute of Standards and Technology database and FashionMNIST database. |
|
The PyTorch datasets for MNIST. |
|
The MXNet datasets for MNIST. |
|
The Tensorflow datasets for MNIST. |
|
FashionMNIST database. |
|
The PyTorch datasets for FashionMNIST. |
|
The MXNet Dataset for FashionMNIST. |
|
The Tensorflow Dataset for FashionMNIST. |
|
The base class for ImageFolder. |
|
The MXNet Dataset for image folder. |
|
The Tensorflow Dataset for image folder. |
|
The Tensorflow TFRecord Dataset. |
|
Tensorflow imageNet database in tf record format. |
|
The Tensorflow PASCAL VOC 2012 database in tf record format. |
Functions
|
Register dataset subclasses. |
|
Download from url. |
Generate progress bar. |
|
|
Check MD5 checksum. |
|
Generate MD5 checksum for a file. |
Module Contents
- class neural_compressor.data.datasets.dataset.TensorflowDatasets[source]
The base class of Tensorflow datasets class.
- class neural_compressor.data.datasets.dataset.PyTorchDatasets[source]
The base class of PyTorch datasets class.
- class neural_compressor.data.datasets.dataset.MXNetDatasets[source]
The base class of MXNet datasets class.
- class neural_compressor.data.datasets.dataset.ONNXRTQLDatasets[source]
The base class of ONNXRT QLinear datasets class.
- class neural_compressor.data.datasets.dataset.ONNXRTITDatasets[source]
The base class of ONNXRT IT datasets class.
- class neural_compressor.data.datasets.dataset.PytorchMxnetWrapDataset(datafunc)[source]
The base class for PyTorch and MXNet frameworks.
- Parameters:
datafunc – The datasets class of PyTorch or MXNet.
- class neural_compressor.data.datasets.dataset.PytorchMxnetWrapFunction(dataset, transform, filter, *args, **kwargs)[source]
The Helper class for PytorchMxnetWrapDataset.
- Parameters:
dataset (datasets class) – The datasets class of PyTorch or MXNet.
transform (transform object) – transform to process input data.
filter (Filter objects) – filter out examples according to specific conditions.
- neural_compressor.data.datasets.dataset.framework_datasets[source]
The datasets supported by neural_compressor, it’s model specific and can be configured by yaml file.
User could add new datasets by implementing new Dataset subclass under this directory. The naming convention of new dataset subclass should be something like ImageClassifier, user could choose this dataset by setting “imageclassifier” string in tuning.strategy field of yaml.
Datasets variable is used to store all implemented Dataset subclasses to support model specific dataset.
- class neural_compressor.data.datasets.dataset.Datasets(framework)[source]
A base class for all framework datasets.
- Parameters:
framework (str) – framework name, like:”tensorflow”, “tensorflow_itex”, “keras”, “mxnet”, “onnxrt_qdq”, “onnxrt_qlinearops”, “onnxrt_integerops”, “pytorch”, “pytorch_ipex”, “pytorch_fx”, “onnxruntime”.
- neural_compressor.data.datasets.dataset.dataset_registry(dataset_type, framework, dataset_format='')[source]
Register dataset subclasses.
- Parameters:
cls (class) – The class of register.
dataset_type (str) – The dataset registration name
framework (str) – support 3 framework including ‘tensorflow’, ‘pytorch’, ‘mxnet’
data_format (str) – The format dataset saved, eg ‘raw_image’, ‘tfrecord’
- Returns:
The class of register.
- Return type:
cls
- class neural_compressor.data.datasets.dataset.Dataset[source]
The base class of dataset.
Subclass datasets should overwrite two methods: __getitem__ for indexing to data sample and `__len__`for the size of the dataset
- class neural_compressor.data.datasets.dataset.IterableDataset[source]
An iterable Dataset.
Subclass iterable dataset should also implement a method: __iter__ for iterating over the samples of the dataset.
- neural_compressor.data.datasets.dataset.download_url(url, root, filename=None, md5=None)[source]
Download from url.
- Parameters:
url (str) – the address to download from.
root (str) – the path for saving.
filename (str) – the file name for saving.
md5 (str) – the md5 string.
- neural_compressor.data.datasets.dataset.calculate_md5(fpath, chunk_size=1024 * 1024)[source]
Generate MD5 checksum for a file.
- class neural_compressor.data.datasets.dataset.CIFAR10(root, train=False, transform=None, filter=None, download=True)[source]
The CIFAR10 and CIFAR100 database.
- For CIFAR10: If download is True, it will download dataset to root/ and extract it
automatically, otherwise user can download file from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz manually to root/ and extract it.
- For CIFAR100: If download is True, it will download dataset to root/ and extract it
automatically, otherwise user can download file from https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz manually to root/ and extract it.
- Parameters:
root (str) – Root directory of dataset.
train (bool, default=False) – If True, creates dataset from train subset, otherwise from validation subset.
transform (transform object, default=None) – transform to process input data.
filter (Filter objects, default=None) – filter out examples according to specific conditions.
download (bool, default=True) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
- class neural_compressor.data.datasets.dataset.PytorchCIFAR10(root, train=False, transform=None, filter=None, download=True)[source]
The PyTorch datasets for CIFAR10.
- class neural_compressor.data.datasets.dataset.MXNetCIFAR10(root, train=False, transform=None, filter=None, download=True)[source]
The MXNet datasets for CIFAR10.
- class neural_compressor.data.datasets.dataset.TensorflowCIFAR10(root, train=False, transform=None, filter=None, download=True)[source]
The Tensorflow datasets for CIFAR10.
- class neural_compressor.data.datasets.dataset.CIFAR100(root, train=False, transform=None, filter=None, download=True)[source]
CIFAR100 database.
- For CIFAR100: If download is True, it will download dataset to root/ and extract it
automatically, otherwise user can download file from https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz manually to root/ and extract it.
- Parameters:
root (str) – Root directory of dataset.
train (bool, default=False) – If True, creates dataset from train subset, otherwise from validation subset.
transform (transform object, default=None) – transform to process input data.
filter (Filter objects, default=None) – filter out examples according to specific conditions.
download (bool, default=True) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
- class neural_compressor.data.datasets.dataset.PytorchCIFAR100(root, train=False, transform=None, filter=None, download=True)[source]
The PyTorch datasets for CIFAR100.
- class neural_compressor.data.datasets.dataset.MXNetCIFAR100(root, train=False, transform=None, filter=None, download=True)[source]
The MXNet datasets for CIFAR100.
- class neural_compressor.data.datasets.dataset.TensorflowCIFAR100(root, train=False, transform=None, filter=None, download=True)[source]
The Tensorflow datasets for CIFAR100.
- class neural_compressor.data.datasets.dataset.MNIST(root, train=False, transform=None, filter=None, download=True)[source]
Modified National Institute of Standards and Technology database and FashionMNIST database.
- For MNIST: If download is True, it will download dataset to root/MNIST/, otherwise user
should put mnist.npz under root/MNIST/ manually.
- For FashionMNIST: If download is True, it will download dataset to root/FashionMNIST/,
otherwise user should put train-labels-idx1-ubyte.gz, train-images-idx3-ubyte.gz, t10k-labels-idx1-ubyte.gz and t10k-images-idx3-ubyte.gz under root/FashionMNIST/ manually.
- Parameters:
root (str) – Root directory of dataset.
train (bool, default=False) – If True, creates dataset from train subset, otherwise from validation subset.
transform (transform object, default=None) – transform to process input data.
filter (Filter objects, default=None) – filter out examples according to specific conditions.
download (bool, default=True) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
- class neural_compressor.data.datasets.dataset.PytorchMNIST(root, train=False, transform=None, filter=None, download=True)[source]
The PyTorch datasets for MNIST.
- class neural_compressor.data.datasets.dataset.MXNetMNIST(root, train=False, transform=None, filter=None, download=True)[source]
The MXNet datasets for MNIST.
- class neural_compressor.data.datasets.dataset.TensorflowMNIST(root, train=False, transform=None, filter=None, download=True)[source]
The Tensorflow datasets for MNIST.
- class neural_compressor.data.datasets.dataset.FashionMNIST(root, train=False, transform=None, filter=None, download=True)[source]
FashionMNIST database.
- For FashionMNIST: If download is True, it will download dataset to root/FashionMNIST/,
otherwise user should put train-labels-idx1-ubyte.gz, train-images-idx3-ubyte.gz, t10k-labels-idx1-ubyte.gz and t10k-images-idx3-ubyte.gz under root/FashionMNIST/ manually.
- Parameters:
root (str) – Root directory of dataset.
train (bool, default=False) – If True, creates dataset from train subset, otherwise from validation subset.
transform (transform object, default=None) – transform to process input data.
filter (Filter objects, default=None) – filter out examples according to specific conditions.
download (bool, default=True) – If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again.
- class neural_compressor.data.datasets.dataset.PytorchFashionMNIST(root, train=False, transform=None, filter=None, download=True)[source]
The PyTorch datasets for FashionMNIST.
- class neural_compressor.data.datasets.dataset.MXNetFashionMNIST(root, train=False, transform=None, filter=None, download=True)[source]
The MXNet Dataset for FashionMNIST.
- class neural_compressor.data.datasets.dataset.TensorflowFashionMNIST(root, train=False, transform=None, filter=None, download=True)[source]
The Tensorflow Dataset for FashionMNIST.
- class neural_compressor.data.datasets.dataset.ImageFolder(root, transform=None, filter=None)[source]
The base class for ImageFolder.
Expects the data folder to contain subfolders representing the classes to which its images belong.
- Please arrange data in this way:
root/class_1/xxx.png root/class_1/xxy.png root/class_1/xxz.png … root/class_n/123.png root/class_n/nsdf3.png root/class_n/asd932_.png
Please put images of different categories into different folders.
- Args: root (str): Root directory of dataset.
transform (transform object, default=None): transform to process input data. filter (Filter objects, default=None): filter out examples according to specific
conditions.
- class neural_compressor.data.datasets.dataset.MXNetImageFolder(root, transform=None, filter=None)[source]
The MXNet Dataset for image folder.
Expects the data folder to contain subfolders representing the classes to which its images belong.
- Please arrange data in this way:
root/class_1/xxx.png root/class_1/xxy.png root/class_1/xxz.png … root/class_n/123.png root/class_n/nsdf3.png root/class_n/asd932_.png
Please put images of different categories into different folders.
- Args: root (str): Root directory of dataset.
transform (transform object, default=None): transform to process input data. filter (Filter objects, default=None): filter out examples according to specific
conditions.
- class neural_compressor.data.datasets.dataset.Tensorflow(root, transform=None, filter=None)[source]
The Tensorflow Dataset for image folder.
Expects the data folder to contain subfolders representing the classes to which its images belong.
- Please arrange data in this way:
root/class_1/xxx.png root/class_1/xxy.png root/class_1/xxz.png … root/class_n/123.png root/class_n/nsdf3.png root/class_n/asd932_.png
Please put images of different categories into different folders.
- Args: root (str): Root directory of dataset.
transform (transform object, default=None): transform to process input data. filter (Filter objects, default=None): filter out examples according to specific
conditions.
- class neural_compressor.data.datasets.dataset.TensorflowTFRecordDataset[source]
The Tensorflow TFRecord Dataset.
Root is a full path to tfrecord file, which contains the file name.
- Args: root (str): filename of dataset.
transform (transform object, default=None): transform to process input data. filter (Filter objects, default=None): filter out examples according
to specific conditions.
- class neural_compressor.data.datasets.dataset.TensorflowImageRecord[source]
Tensorflow imageNet database in tf record format.
- Please arrange data in this way:
root/validation-000-of-100 root/validation-001-of-100 … root/validation-099-of-100
The file name needs to follow this pattern: ‘* - * -of- *’
- Args: root (str): Root directory of dataset.
transform (transform object, default=None): transform to process input data. filter (Filter objects, default=None): filter out examples according
to specific conditions.
- class neural_compressor.data.datasets.dataset.TensorflowVOCRecord[source]
The Tensorflow PASCAL VOC 2012 database in tf record format.
- Please arrange data in this way:
root/val-00000-of-00004.tfrecord root/val-00001-of-00004.tfrecord … root/val-00003-of-00004.tfrecord
The file name needs to follow this pattern: ‘val--of-’
- Args: root (str): Root directory of dataset.
transform (transform object, default=None): transform to process input data. filter (Filter objects, default=None): filter out examples according
to specific conditions.