neural_compressor.common.tuning_param
The tunable parameters module.
Classes
Enumeration representing the different levels of tuning parameters. |
|
Define the tunable parameter for the algorithm. |
Module Contents
- class neural_compressor.common.tuning_param.ParamLevel[source]
Enumeration representing the different levels of tuning parameters.
- class neural_compressor.common.tuning_param.TuningParam(name: str, default_val: Any = None, tunable_type=None, options=None, level: ParamLevel = ParamLevel.OP_LEVEL)[source]
Define the tunable parameter for the algorithm.
Example
- Class FakeAlgoConfig(BaseConfig):
‘’’Fake algo config.’’’.
- params_list = [
… # For simple tunable types, like a list of int, giving # the param name is enough. BaseConfig class will # create the TuningParam implicitly. “simple_attr”
# For complex tunable types, like a list of lists, # developers need to create the TuningParam explicitly. TuningParam(“complex_attr”, tunable_type=List[List[str]])
# The default parameter level is ParamLevel.OP_LEVEL. # If the parameter is at a different level, developers need # to specify it explicitly. TuningParam(“model_attr”, level=ParamLevel.MODEL_LEVEL)
…
# TODO: more examples to explain the usage of TuningParam.