neural_compressor.strategy.hawq_v2
¶
The HAWQ_V2 tuning strategy.
Module Contents¶
Classes¶
The HAWQ V2 tuning strategy. |
- class neural_compressor.strategy.hawq_v2.HAWQ_V2TuneStrategy(model, conf, q_dataloader=None, q_func=None, eval_dataloader=None, eval_func=None, resume=None, q_hooks=None)¶
Bases:
neural_compressor.strategy.strategy.TuneStrategy
The HAWQ V2 tuning strategy.
HAWQ_V2 implements the “Hawq-v2: Hessian aware trace-weighted quantization of neural networks”. We made a small change to it by using the hessian trace to score the op impact and then fallback the OPs according to the scoring result.
- next_tune_cfg()¶
Generate and yield the next tuning config using HAWQ v2 search in tuning space.
- Yields:
tune_config (dict) – A dict containing the tuning configuration for quantization.