neural_compressor.pruner.utils

prune utils.

Module Contents

Functions

check_config(prune_config)

Check if the configuration dict is valid for running Pruning object.

reset_none_to_default(obj, key, default)

Set undefined configurations to default values.

update_params(info)

Update parameters.

process_weight_config(global_config, local_configs, ...)

Process pruning configurations.

process_yaml_config(global_config, local_configs, ...)

Process the yaml configuration file.

check_key_validity(template_config, user_config)

Check the validity of keys.

process_and_check_config(val)

Process and check configurations.

process_config(config)

Obtain a config dict object from the config file.

parse_to_prune(config, model)

Keep target pruned layers.

neural_compressor.pruner.utils.check_config(prune_config)

Check if the configuration dict is valid for running Pruning object.

Parameters:

prune_config – A config dict object that contains Pruning parameters and configurations.

Returns:

None if everything is correct.

Raises:

AssertionError.

neural_compressor.pruner.utils.reset_none_to_default(obj, key, default)

Set undefined configurations to default values.

Parameters:
  • obj – A dict{key: value}

  • key – A string representing the key in obj.

  • default – When the key is not in obj, add key by the default item in original obj.

neural_compressor.pruner.utils.update_params(info)

Update parameters.

neural_compressor.pruner.utils.process_weight_config(global_config, local_configs, default_config)

Process pruning configurations.

Parameters:
  • global_config – A config dict object that contains pruning parameters and configurations.

  • local_config – A config dict object that contains pruning parameters and configurations.

  • default_config – A config dict object that contains pruning parameters and configurations.

Returns:

A config dict object that contains pruning parameters and configurations.

Return type:

pruners_info

neural_compressor.pruner.utils.process_yaml_config(global_config, local_configs, default_config)

Process the yaml configuration file.

Parameters:
  • global_config – A config dict object that contains pruning parameters and configurations.

  • local_config – A config dict object that contains pruning parameters and configurations.

  • default_config – A config dict object that contains pruning parameters and configurations.

Returns:

A config dict object that contains pruning parameters and configurations.

Return type:

pruners_info

neural_compressor.pruner.utils.check_key_validity(template_config, user_config)

Check the validity of keys.

Parameters:
  • template_config – A default config dict object that contains pruning parameters and configurations.

  • user_config – A user config dict object that contains pruning parameters and configurations.

neural_compressor.pruner.utils.process_and_check_config(val)

Process and check configurations.

Parameters:

val – A dict that contains the layer-specific pruning configurations.

neural_compressor.pruner.utils.process_config(config)

Obtain a config dict object from the config file.

Parameters:

config – A string representing the path to the configuration file.

Returns:

A config dict object.

neural_compressor.pruner.utils.parse_to_prune(config, model)

Keep target pruned layers.

Parameters:
  • config – A string representing the path to the configuration file.

  • model – The model to be pruned.