neural_compressor.experimental.nas.search_algorithms
¶
Search algorithms for NAS.
Module Contents¶
Classes¶
Base class for defining the common methods of different search algorithms. |
|
Grid search. |
|
Random search. |
|
Bayesian Optimization. |
- class neural_compressor.experimental.nas.search_algorithms.Searcher(search_space)¶
Bases:
object
Base class for defining the common methods of different search algorithms.
- Parameters:
search_space (dict) – A dictionary for defining the search space.
- abstract suggest()¶
Suggest the model architecture.
- get_feedback(metric)¶
Get metric feedback for the search algorithm.
- params_vec2params_dict(para_vec)¶
Convert the parameters vector to parameters dictionary.
Where parameters vector and parameters dictionary both define the model architecture.
- Returns:
Parameters dictionary defining the model architecture.
- class neural_compressor.experimental.nas.search_algorithms.GridSearcher(search_space)¶
Bases:
Searcher
Grid search.
Search the whole search space exhaustively.
- Parameters:
search_space (dict) – A dictionary for defining the search space.
- suggest()¶
Suggest the model architecture.
- Returns:
The model architecture.
- class neural_compressor.experimental.nas.search_algorithms.RandomSearcher(search_space, seed=42)¶
Bases:
Searcher
Random search.
Search the whole search space randomly.
- Parameters:
search_space (dict) – A dictionary for defining the search space.
- suggest()¶
Suggest the model architecture.
- Returns:
The model architecture.
- class neural_compressor.experimental.nas.search_algorithms.BayesianOptimizationSearcher(search_space, seed=42)¶
Bases:
Searcher
Bayesian Optimization.
Search the search space with Bayesian Optimization.
- Parameters:
search_space (dict) – A dictionary for defining the search space.
- suggest()¶
Suggest the model architecture.
- Returns:
The model architecture.
- get_feedback(metric)¶
Get metric feedback and register this metric.
- indices2params_vec(indices)¶
Convert indices to parameters vector.