neural_compressor.experimental.nas.nas_utils
¶
Common methods for NAS.
Module Contents¶
Functions¶
|
Decorate the NAS subclasses. |
|
Create all the samples from the search space. |
|
Find the pareto front points, assuming all metrics are "higher is better". |
- neural_compressor.experimental.nas.nas_utils.nas_registry(nas_method)¶
Decorate the NAS subclasses.
The class decorator used to register all NAS subclasses.
- Parameters:
nas_method (str) – The string of supported NAS Method.
- Returns:
The class of register.
- Return type:
cls
- neural_compressor.experimental.nas.nas_utils.create_search_space_pool(search_space, idx=0)¶
Create all the samples from the search space.
- Parameters:
search_space (dict) – A dict defining the search space.
idx (int) – An index for indicating which key of search_space to enumerate.
- Returns:
A list of all the samples from the search space.
- neural_compressor.experimental.nas.nas_utils.find_pareto_front(metrics)¶
Find the pareto front points, assuming all metrics are “higher is better”.
- Parameters:
metrics (numpy array or list) – An (n_points, n_metrics) array.
- Returns:
An array of indices of pareto front points. It is a (n_pareto_points, ) integer array of indices.