neural_compressor.data.transforms.transform

Neural Compressor built-in Transforms on multiple framework backends.

Module Contents

Classes

Transforms

INC supports built-in preprocessing, postprocessing and general methods on different framework backends.

TensorflowTransforms

Tensorflow Transforms subclass.

MXNetTransforms

Mxnet Transforms subclass.

PyTorchTransforms

Pytorch Transforms subclass.

ONNXRTQLTransforms

Onnxrt_qlinearops Transforms subclass.

ONNXRTITTransforms

Onnxrt_integerops Transforms subclass.

TRANSFORMS

Transforms collection class.

BaseTransform

The base class for transform.

TensorflowWrapFunction

Tensorflow wrapper function class.

TensorflowTransform

Tensorflow transform class, the subclass of BaseTransform.

PytorchMxnetWrapFunction

Pytorch and MXNet wrapper function class.

PytorchMxnetTransform

Pytorch and Mxnet transform class, the subclass of BaseTransform.

ComposeTransform

Composes several transforms together.

CropToBoundingBox

Crops an image to a specified bounding box.

MXNetCropToBoundingBox

Crops an image to a specified bounding box.

ONNXRTCropToBoundingBox

Crops an image to a specified bounding box.

TensorflowCropToBoundingBox

Crops an image to a specified bounding box.

ResizeWithRatio

Resize image with aspect ratio and pad it to max shape(optional).

TensorflowResizeWithRatio

Resize image with aspect ratio and pad it to max shape(optional).

Transpose

Transpose image according to perm.

TensorflowTranspose

Transpose image according to perm.

MXNetTranspose

Transpose image according to perm.

PyTorchTranspose

Transpose image according to perm.

RandomVerticalFlip

Vertically flip the given image randomly.

TensorflowRandomVerticalFlip

Vertically flip the given image randomly.

RandomHorizontalFlip

Horizontally flip the given image randomly.

TensorflowRandomHorizontalFlip

Horizontally flip the given image randomly.

ToArray

Convert PIL Image or NDArray to numpy array.

CastTFTransform

Convert image to given dtype.

CastONNXTransform

Convert image to given dtype.

CastPyTorchTransform

Convert image to given dtype.

CenterCropTFTransform

Crops the given image at the center to the given size.

PaddedCenterCropTransform

Crops the given image at the center to the given size with padding.

ResizeTFTransform

Resize the input image to the given size.

ResizePytorchTransform

Resize the input image to the given size.

RandomCropTFTransform

Crop the image at a random location to the given size.

RandomResizedCropPytorchTransform

Crop the given image to random size and aspect ratio.

RandomResizedCropMXNetTransform

Crop the given image to random size and aspect ratio.

RandomResizedCropTFTransform

Crop the given image to random size and aspect ratio.

NormalizeTFTransform

Normalize a image with mean and standard deviation.

RescaleKerasPretrainTransform

Scale the values of image to [0,1].

RescaleTFTransform

Scale the values of image to [0,1].

RescaleTransform

Scale the values of image to [0,1].

AlignImageChannelTransform

Align image channel, now just support [H,W]->[H,W,dim], [H,W,4]->[H,W,3] and [H,W,3]->[H,W].

PyTorchAlignImageChannel

Align image channel, now just support [H,W,4]->[H,W,3] and [H,W,3]->[H,W].

ToNDArrayTransform

Convert np.array to NDArray.

ResizeMXNetTransform

Resize the input image to the given size.

ResizeTransform

Resize the input image to the given size.

CropResizeTFTransform

Crop the input image with given location and resize it.

PyTorchCropResizeTransform

Crop the input image with given location and resize it.

MXNetCropResizeTransform

Crop the input image with given location and resize it.

CropResizeTransform

Crop the input image with given location and resize it.

CenterCropTransform

Crops the given image at the center to the given size.

MXNetNormalizeTransform

Normalize a image with mean and standard deviation.

PyTorchNormalizeTransform

Normalize a image with mean and standard deviation.

NormalizeTransform

Normalize a image with mean and standard deviation.

RandomCropTransform

Crop the image at a random location to the given size.

RandomResizedCropTransform

Crop the given image to random size and aspect ratio.

SquadExample

A single training/test example for simple sequence classification.

InputFeatures

A single set of features of data.

CollectTransform

Postprocess the predictions, collect data.

TFSquadV1PostTransform

Postprocess the predictions of bert on SQuAD.

TFModelZooCollectTransform

Postprocess the predictions of model zoo, collect data.

TFSquadV1ModelZooPostTransform

Postprocess the predictions of bert on SQuADV1.1.

ParseDecodeVocTransform

Parse features in Example proto.

Functions

transform_registry(transform_type, process, framework)

Class decorator used to register all transform subclasses.

get_torchvision_map(interpolation)

Get torchvision interpolation map.

get_final_text(pred_text, orig_text, do_lower_case)

Project the tokenized prediction back to the original text.

read_squad_examples(input_file)

Read a SQuAD json file into a list of SquadExample.

convert_examples_to_features(examples, tokenizer, ...)

Load a data file into a list of `InputBatch`s.

class neural_compressor.data.transforms.transform.Transforms(process, concat_general=True)

Bases: object

INC supports built-in preprocessing, postprocessing and general methods on different framework backends.

Transforms base class provides the abstract methods. Users can also register their own Transforms classes by inheriting this base class.

class neural_compressor.data.transforms.transform.TensorflowTransforms(process, concat_general=True)

Bases: Transforms

Tensorflow Transforms subclass.

class neural_compressor.data.transforms.transform.MXNetTransforms(process, concat_general=True)

Bases: Transforms

Mxnet Transforms subclass.

class neural_compressor.data.transforms.transform.PyTorchTransforms(process, concat_general=True)

Bases: Transforms

Pytorch Transforms subclass.

class neural_compressor.data.transforms.transform.ONNXRTQLTransforms(process, concat_general=True)

Bases: Transforms

Onnxrt_qlinearops Transforms subclass.

class neural_compressor.data.transforms.transform.ONNXRTITTransforms(process, concat_general=True)

Bases: Transforms

Onnxrt_integerops Transforms subclass.

class neural_compressor.data.transforms.transform.TRANSFORMS(framework, process)

Bases: object

Transforms collection class.

Provide register method to register new Transforms and provide __getitem__ method to get Transforms according to Transforms type.

register(name, transform_cls)

Register new Transform according to Transforms type.

Parameters:
  • name (str) – process name

  • transform_cls (class) – process function wrapper class

neural_compressor.data.transforms.transform.transform_registry(transform_type, process, framework)

Class decorator used to register all transform subclasses.

Parameters:
  • transform_type (str) – Transform registration name

  • process (str) – support 3 process including ‘preprocess’, ‘postprocess’, ‘general’

  • framework (str) – support 4 framework including ‘tensorflow’, ‘pytorch’, ‘mxnet’, ‘onnxrt’

  • cls (class) – The class of register.

Returns:

The class of register.

Return type:

cls

class neural_compressor.data.transforms.transform.BaseTransform

Bases: object

The base class for transform.

class neural_compressor.data.transforms.transform.TensorflowWrapFunction(transform_func)

Bases: object

Tensorflow wrapper function class.

class neural_compressor.data.transforms.transform.TensorflowTransform(transform_func, **kwargs)

Bases: BaseTransform

Tensorflow transform class, the subclass of BaseTransform.

class neural_compressor.data.transforms.transform.PytorchMxnetWrapFunction(transform_func)

Bases: object

Pytorch and MXNet wrapper function class.

class neural_compressor.data.transforms.transform.PytorchMxnetTransform(transform_func)

Bases: BaseTransform

Pytorch and Mxnet transform class, the subclass of BaseTransform.

neural_compressor.data.transforms.transform.get_torchvision_map(interpolation)

Get torchvision interpolation map.

class neural_compressor.data.transforms.transform.ComposeTransform(transform_list)

Bases: BaseTransform

Composes several transforms together.

Parameters:

transform_list (list of Transform objects) – list of transforms to compose

Returns:

tuple of processed image and label

Return type:

sample (tuple)

class neural_compressor.data.transforms.transform.CropToBoundingBox(offset_height, offset_width, target_height, target_width)

Bases: BaseTransform

Crops an image to a specified bounding box.

Parameters:
  • offset_height (int) – Vertical coordinate of the top-left corner of the result in the input

  • offset_width (int) – Horizontal coordinate of the top-left corner of the result in the input

  • target_height (int) – Height of the result

  • target_width (int) – Width of the result

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.MXNetCropToBoundingBox(offset_height, offset_width, target_height, target_width)

Bases: CropToBoundingBox

Crops an image to a specified bounding box.

Parameters:
  • offset_height (int) – Vertical coordinate of the top-left corner of the result in the input

  • offset_width (int) – Horizontal coordinate of the top-left corner of the result in the input

  • target_height (int) – Height of the result

  • target_width (int) – Width of the result

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.ONNXRTCropToBoundingBox(offset_height, offset_width, target_height, target_width)

Bases: CropToBoundingBox

Crops an image to a specified bounding box.

Parameters:
  • offset_height (int) – Vertical coordinate of the top-left corner of the result in the input

  • offset_width (int) – Horizontal coordinate of the top-left corner of the result in the input

  • target_height (int) – Height of the result

  • target_width (int) – Width of the result

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.TensorflowCropToBoundingBox(offset_height, offset_width, target_height, target_width)

Bases: CropToBoundingBox

Crops an image to a specified bounding box.

Parameters:
  • offset_height (int) – Vertical coordinate of the top-left corner of the result in the input

  • offset_width (int) – Horizontal coordinate of the top-left corner of the result in the input

  • target_height (int) – Height of the result

  • target_width (int) – Width of the result

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.ResizeWithRatio(min_dim=800, max_dim=1365, padding=False, constant_value=0)

Bases: BaseTransform

Resize image with aspect ratio and pad it to max shape(optional).

If the image is padded, the label will be processed at the same time. The input image should be np.array.

Parameters:
  • min_dim (int, default=800) – Resizes the image such that its smaller dimension == min_dim

  • max_dim (int, default=1365) – Ensures that the image longest side doesn’t exceed this value

  • padding (bool, default=False) – If true, pads image with zeros so its size is max_dim x max_dim

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.TensorflowResizeWithRatio(min_dim=800, max_dim=1365, padding=False, constant_value=0)

Bases: BaseTransform

Resize image with aspect ratio and pad it to max shape(optional).

If the image is padded, the label will be processed at the same time. The input image should be np.array or tf.Tensor.

Parameters:
  • min_dim (int, default=800) – Resizes the image such that its smaller dimension == min_dim

  • max_dim (int, default=1365) – Ensures that the image longest side doesn’t exceed this value

  • padding (bool, default=False) – If true, pads image with zeros so its size is max_dim x max_dim

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.Transpose(perm)

Bases: BaseTransform

Transpose image according to perm.

Parameters:

perm (list) – A permutation of the dimensions of input image

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.TensorflowTranspose(perm)

Bases: Transpose

Transpose image according to perm.

Parameters:

perm (list) – A permutation of the dimensions of input image

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.MXNetTranspose(perm)

Bases: Transpose

Transpose image according to perm.

Parameters:

perm (list) – A permutation of the dimensions of input image

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.PyTorchTranspose(perm)

Bases: Transpose

Transpose image according to perm.

Parameters:

perm (list) – A permutation of the dimensions of input image

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.RandomVerticalFlip

Bases: BaseTransform

Vertically flip the given image randomly.

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.TensorflowRandomVerticalFlip

Bases: BaseTransform

Vertically flip the given image randomly.

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.RandomHorizontalFlip

Bases: BaseTransform

Horizontally flip the given image randomly.

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.TensorflowRandomHorizontalFlip

Bases: BaseTransform

Horizontally flip the given image randomly.

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.ToArray

Bases: BaseTransform

Convert PIL Image or NDArray to numpy array.

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.CastTFTransform(dtype='float32')

Bases: BaseTransform

Convert image to given dtype.

Parameters:

dtype (str, default='float32') – A dtype to convert image to

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.CastONNXTransform(dtype='float32')

Bases: BaseTransform

Convert image to given dtype.

Parameters:

dtype (str, default='float32') – A dtype to convert image to

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.CastPyTorchTransform(dtype='float32')

Bases: BaseTransform

Convert image to given dtype.

Parameters:

dtype (str, default='float32') – A dtype to convert image to

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.CenterCropTFTransform(size)

Bases: BaseTransform

Crops the given image at the center to the given size.

Parameters:

size (list or int) – Size of the result

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.PaddedCenterCropTransform(size, crop_padding=0)

Bases: BaseTransform

Crops the given image at the center to the given size with padding.

Parameters:
  • size (list or int) – Size of the result

  • crop_padding (int) – crop padding number

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.ResizeTFTransform(size, interpolation='bilinear')

Bases: BaseTransform

Resize the input image to the given size.

Parameters:
  • size (list or int) – Size of the result

  • interpolation (str, default='bilinear') – Desired interpolation type, support ‘bilinear’, ‘nearest’, ‘bicubic’

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.ResizePytorchTransform(size, interpolation='bilinear')

Bases: BaseTransform

Resize the input image to the given size.

Parameters:
  • size (list or int) – Size of the result

  • interpolation (str, default='bilinear') – Desired interpolation type, support ‘bilinear’, ‘nearest’, ‘bicubic’

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.RandomCropTFTransform(size)

Bases: BaseTransform

Crop the image at a random location to the given size.

Parameters:

size (list or tuple or int) – Size of the result

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.RandomResizedCropPytorchTransform(size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation='bilinear')

Bases: BaseTransform

Crop the given image to random size and aspect ratio.

Parameters:
  • size (list or int) – Size of the result

  • scale (tuple or list, default=(0.08, 1.0)) – range of size of the origin size cropped

  • ratio (tuple or list, default=(3. / 4., 4. / 3.)) – range of aspect ratio of the origin aspect ratio cropped

  • interpolation (str, default='bilinear') – Desired interpolation type, support ‘bilinear’, ‘nearest’, ‘bicubic’

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.RandomResizedCropMXNetTransform(size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation='bilinear')

Bases: BaseTransform

Crop the given image to random size and aspect ratio.

Parameters:
  • size (list or int) – Size of the result

  • scale (tuple or list, default=(0.08, 1.0)) – range of size of the origin size cropped

  • ratio (tuple or list, default=(3. / 4., 4. / 3.)) – range of aspect ratio of the origin aspect ratio cropped

  • interpolation (str, default='bilinear') – Desired interpolation type, support ‘bilinear’, ‘nearest’, ‘bicubic’

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.RandomResizedCropTFTransform(size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation='bilinear')

Bases: BaseTransform

Crop the given image to random size and aspect ratio.

Parameters:
  • size (list or int) – Size of the result

  • scale (tuple or list, default=(0.08, 1.0)) – range of size of the origin size cropped

  • ratio (tuple or list, default=(3. / 4., 4. / 3.)) – range of aspect ratio of the origin aspect ratio cropped

  • interpolation (str, default='bilinear') – Desired interpolation type, support ‘bilinear’, ‘nearest’

Returns:

tuple of processed image and label

get_params(image, scale, ratio)

Get the image prameters: position, height and width.

class neural_compressor.data.transforms.transform.NormalizeTFTransform(mean=[0.0], std=[1.0], rescale=None)

Bases: BaseTransform

Normalize a image with mean and standard deviation.

Parameters:
  • mean (list, default=[0.0]) – means for each channel, if len(mean)=1, mean will be broadcasted to each channel, otherwise its length should be same with the length of image shape

  • std (list, default=[1.0]) – stds for each channel, if len(std)=1, std will be broadcasted to each channel, otherwise its length should be same with the length of image shape

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.RescaleKerasPretrainTransform(rescale=None)

Bases: BaseTransform

Scale the values of image to [0,1].

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.RescaleTFTransform

Bases: BaseTransform

Scale the values of image to [0,1].

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.RescaleTransform

Bases: BaseTransform

Scale the values of image to [0,1].

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.AlignImageChannelTransform(dim=3)

Bases: BaseTransform

Align image channel, now just support [H,W]->[H,W,dim], [H,W,4]->[H,W,3] and [H,W,3]->[H,W].

Input image must be np.ndarray.

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.PyTorchAlignImageChannel(dim=3)

Bases: BaseTransform

Align image channel, now just support [H,W,4]->[H,W,3] and [H,W,3]->[H,W].

Input image must be PIL Image.

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.ToNDArrayTransform

Bases: BaseTransform

Convert np.array to NDArray.

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.ResizeMXNetTransform(size, interpolation='bilinear')

Bases: BaseTransform

Resize the input image to the given size.

Parameters:
  • size (list or int) – Size of the result

  • interpolation (str, default='bilinear') – Desired interpolation type, support ‘bilinear’, ‘nearest’, ‘bicubic’

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.ResizeTransform(size, interpolation='bilinear')

Bases: BaseTransform

Resize the input image to the given size.

Parameters:
  • size (list or int) – Size of the result

  • interpolation (str, default='bilinear') – Desired interpolation type,

  • 'bilinear' (support) –

  • 'nearest'

  • 'bicubic'.

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.CropResizeTFTransform(x, y, width, height, size, interpolation='bilinear')

Bases: BaseTransform

Crop the input image with given location and resize it.

Parameters:
  • x (int) – Left boundary of the cropping area

  • y (int) – Top boundary of the cropping area

  • width (int) – Width of the cropping area

  • height (int) – Height of the cropping area

  • size (list or int) – resize to new size after cropping

  • interpolation (str, default='bilinear') – Desired interpolation type, support ‘bilinear’, ‘nearest’, ‘bicubic’

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.PyTorchCropResizeTransform(x, y, width, height, size, interpolation='bilinear')

Bases: BaseTransform

Crop the input image with given location and resize it.

Parameters:
  • x (int) – Left boundary of the cropping area

  • y (int) – Top boundary of the cropping area

  • width (int) – Width of the cropping area

  • height (int) – Height of the cropping area

  • size (list or int) – resize to new size after cropping

  • interpolation (str, default='bilinear') – Desired interpolation type, support ‘bilinear’, ‘nearest’, ‘bicubic’

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.MXNetCropResizeTransform(x, y, width, height, size, interpolation='bilinear')

Bases: BaseTransform

Crop the input image with given location and resize it.

Parameters:
  • x (int) – Left boundary of the cropping area

  • y (int) – Top boundary of the cropping area

  • width (int) – Width of the cropping area

  • height (int) – Height of the cropping area

  • size (list or int) – resize to new size after cropping

  • interpolation (str, default='bilinear') – Desired interpolation type, support ‘bilinear’, ‘nearest’, ‘bicubic’

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.CropResizeTransform(x, y, width, height, size, interpolation='bilinear')

Bases: BaseTransform

Crop the input image with given location and resize it.

Parameters:
  • x (int) – Left boundary of the cropping area

  • y (int) – Top boundary of the cropping area

  • width (int) – Width of the cropping area

  • height (int) – Height of the cropping area

  • size (list or int) – resize to new size after cropping

  • interpolation (str, default='bilinear') – Desired interpolation type, support ‘bilinear’, ‘nearest’, ‘bicubic’

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.CenterCropTransform(size)

Bases: BaseTransform

Crops the given image at the center to the given size.

Parameters:

size (list or int) – Size of the result

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.MXNetNormalizeTransform(mean=[0.0], std=[1.0])

Bases: BaseTransform

Normalize a image with mean and standard deviation.

Parameters:
  • mean (list, default=[0.0]) – means for each channel, if len(mean)=1, mean will be broadcasted to each channel, otherwise its length should be same with the length of image shape

  • std (list, default=[1.0]) – stds for each channel, if len(std)=1, std will be broadcasted to each channel, otherwise its length should be same with the length of image shape

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.PyTorchNormalizeTransform(mean=[0.0], std=[1.0])

Bases: MXNetNormalizeTransform

Normalize a image with mean and standard deviation.

Parameters:
  • mean (list, default=[0.0]) – means for each channel, if len(mean)=1, mean will be broadcasted to each channel, otherwise its length should be same with the length of image shape

  • std (list, default=[1.0]) – stds for each channel, if len(std)=1, std will be broadcasted to each channel, otherwise its length should be same with the length of image shape

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.NormalizeTransform(mean=[0.0], std=[1.0])

Bases: BaseTransform

Normalize a image with mean and standard deviation.

Parameters:
  • mean (list, default=[0.0]) – means for each channel, if len(mean)=1, mean will be broadcasted to each channel, otherwise its length should be same with the length of image shape

  • std (list, default=[1.0]) – stds for each channel, if len(std)=1, std will be broadcasted to each channel, otherwise its length should be same with the length of image shape

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.RandomCropTransform(size)

Bases: BaseTransform

Crop the image at a random location to the given size.

Parameters:

size (list or tuple or int) – Size of the result

Returns:

tuple of processed image and label

class neural_compressor.data.transforms.transform.RandomResizedCropTransform(size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation='bilinear')

Bases: BaseTransform

Crop the given image to random size and aspect ratio.

Parameters:
  • size (list or int) – Size of the result

  • scale (tuple or list, default=(0.08, 1.0)) – range of size of the origin size cropped

  • ratio (tuple or list, default=(3. / 4., 4. / 3.)) – range of aspect ratio of the origin aspect ratio cropped

  • interpolation (str, default='bilinear') – Desired interpolation type, support ‘bilinear’, ‘nearest’

Returns:

tuple of processed image and label

get_params(image, scale, ratio)

Get the image prameters: position, height and width.

neural_compressor.data.transforms.transform.get_final_text(pred_text, orig_text, do_lower_case)

Project the tokenized prediction back to the original text.

class neural_compressor.data.transforms.transform.SquadExample(qas_id, question_text, doc_tokens, orig_answer_text=None, start_position=None, end_position=None, is_impossible=False)

Bases: object

A single training/test example for simple sequence classification.

For examples without an answer, the start and end position are -1.

class neural_compressor.data.transforms.transform.InputFeatures(unique_id, example_index, doc_span_index, tokens, token_to_orig_map, token_is_max_context, input_ids, input_mask, segment_ids, start_position=None, end_position=None, is_impossible=None)

Bases: object

A single set of features of data.

neural_compressor.data.transforms.transform.read_squad_examples(input_file)

Read a SQuAD json file into a list of SquadExample.

neural_compressor.data.transforms.transform.convert_examples_to_features(examples, tokenizer, max_seq_length, doc_stride, max_query_length, output_fn)

Load a data file into a list of `InputBatch`s.

class neural_compressor.data.transforms.transform.CollectTransform(length=10833)

Bases: BaseTransform

Postprocess the predictions, collect data.

class neural_compressor.data.transforms.transform.TFSquadV1PostTransform(label_file, vocab_file, n_best_size=20, max_seq_length=384, max_query_length=64, max_answer_length=30, do_lower_case=True, doc_stride=128)

Bases: BaseTransform

Postprocess the predictions of bert on SQuAD.

Parameters:
  • label_file (str) – path of label file

  • vocab_file (str) – path of vocabulary file

  • n_best_size (int, default=20) – The total number of n-best predictions to generate in nbest_predictions.json

  • max_seq_length (int, default=384) – The maximum total input sequence length after WordPiece tokenization. Sequences longer than this will be truncated, shorter than this will be padded

  • max_query_length (int, default=64) – The maximum number of tokens for the question. Questions longer than this will be truncated to this length

  • max_answer_length (int, default=30) – The maximum length of an answer that can be generated. This is needed because the start and end predictions are not conditioned on one another

  • do_lower_case (bool, default=True) – Whether to lower case the input text. Should be True for uncased models and False for cased models

  • doc_stride (int, default=128) – When splitting up a long document into chunks, how much stride to take between chunks

Returns:

tuple of processed prediction and label

process_result(results)

Get the processed results.

get_postprocess_result(sample)

Get the post processed results.

class neural_compressor.data.transforms.transform.TFModelZooCollectTransform(length=10833)

Bases: CollectTransform

Postprocess the predictions of model zoo, collect data.

class neural_compressor.data.transforms.transform.TFSquadV1ModelZooPostTransform(label_file, vocab_file, n_best_size=20, max_seq_length=384, max_query_length=64, max_answer_length=30, do_lower_case=True, doc_stride=128)

Bases: TFSquadV1PostTransform

Postprocess the predictions of bert on SQuADV1.1.

See class TFSquadV1PostTransform for more details

class neural_compressor.data.transforms.transform.ParseDecodeVocTransform

Bases: BaseTransform

Parse features in Example proto.

Returns:

tuple of parsed image and labels