clang  19.0.0git
smmintrin.h
Go to the documentation of this file.
1 /*===---- smmintrin.h - SSE4 intrinsics ------------------------------------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 
10 #ifndef __SMMINTRIN_H
11 #define __SMMINTRIN_H
12 
13 #if !defined(__i386__) && !defined(__x86_64__)
14 #error "This header is only meant to be used on x86 and x64 architecture"
15 #endif
16 
17 #include <tmmintrin.h>
18 
19 /* Define the default attributes for the functions in this file. */
20 #define __DEFAULT_FN_ATTRS \
21  __attribute__((__always_inline__, __nodebug__, \
22  __target__("sse4.1,no-evex512"), __min_vector_width__(128)))
23 
24 /* SSE4 Rounding macros. */
25 #define _MM_FROUND_TO_NEAREST_INT 0x00
26 #define _MM_FROUND_TO_NEG_INF 0x01
27 #define _MM_FROUND_TO_POS_INF 0x02
28 #define _MM_FROUND_TO_ZERO 0x03
29 #define _MM_FROUND_CUR_DIRECTION 0x04
30 
31 #define _MM_FROUND_RAISE_EXC 0x00
32 #define _MM_FROUND_NO_EXC 0x08
33 
34 #define _MM_FROUND_NINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEAREST_INT)
35 #define _MM_FROUND_FLOOR (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_NEG_INF)
36 #define _MM_FROUND_CEIL (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_POS_INF)
37 #define _MM_FROUND_TRUNC (_MM_FROUND_RAISE_EXC | _MM_FROUND_TO_ZERO)
38 #define _MM_FROUND_RINT (_MM_FROUND_RAISE_EXC | _MM_FROUND_CUR_DIRECTION)
39 #define _MM_FROUND_NEARBYINT (_MM_FROUND_NO_EXC | _MM_FROUND_CUR_DIRECTION)
40 
41 /// Rounds up each element of the 128-bit vector of [4 x float] to an
42 /// integer and returns the rounded values in a 128-bit vector of
43 /// [4 x float].
44 ///
45 /// \headerfile <x86intrin.h>
46 ///
47 /// \code
48 /// __m128 _mm_ceil_ps(__m128 X);
49 /// \endcode
50 ///
51 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
52 ///
53 /// \param X
54 /// A 128-bit vector of [4 x float] values to be rounded up.
55 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
56 #define _mm_ceil_ps(X) _mm_round_ps((X), _MM_FROUND_CEIL)
57 
58 /// Rounds up each element of the 128-bit vector of [2 x double] to an
59 /// integer and returns the rounded values in a 128-bit vector of
60 /// [2 x double].
61 ///
62 /// \headerfile <x86intrin.h>
63 ///
64 /// \code
65 /// __m128d _mm_ceil_pd(__m128d X);
66 /// \endcode
67 ///
68 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
69 ///
70 /// \param X
71 /// A 128-bit vector of [2 x double] values to be rounded up.
72 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
73 #define _mm_ceil_pd(X) _mm_round_pd((X), _MM_FROUND_CEIL)
74 
75 /// Copies three upper elements of the first 128-bit vector operand to
76 /// the corresponding three upper elements of the 128-bit result vector of
77 /// [4 x float]. Rounds up the lowest element of the second 128-bit vector
78 /// operand to an integer and copies it to the lowest element of the 128-bit
79 /// result vector of [4 x float].
80 ///
81 /// \headerfile <x86intrin.h>
82 ///
83 /// \code
84 /// __m128 _mm_ceil_ss(__m128 X, __m128 Y);
85 /// \endcode
86 ///
87 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
88 ///
89 /// \param X
90 /// A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
91 /// copied to the corresponding bits of the result.
92 /// \param Y
93 /// A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
94 /// rounded up to the nearest integer and copied to the corresponding bits
95 /// of the result.
96 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
97 /// values.
98 #define _mm_ceil_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_CEIL)
99 
100 /// Copies the upper element of the first 128-bit vector operand to the
101 /// corresponding upper element of the 128-bit result vector of [2 x double].
102 /// Rounds up the lower element of the second 128-bit vector operand to an
103 /// integer and copies it to the lower element of the 128-bit result vector
104 /// of [2 x double].
105 ///
106 /// \headerfile <x86intrin.h>
107 ///
108 /// \code
109 /// __m128d _mm_ceil_sd(__m128d X, __m128d Y);
110 /// \endcode
111 ///
112 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
113 ///
114 /// \param X
115 /// A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
116 /// copied to the corresponding bits of the result.
117 /// \param Y
118 /// A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
119 /// rounded up to the nearest integer and copied to the corresponding bits
120 /// of the result.
121 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
122 /// values.
123 #define _mm_ceil_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_CEIL)
124 
125 /// Rounds down each element of the 128-bit vector of [4 x float] to an
126 /// an integer and returns the rounded values in a 128-bit vector of
127 /// [4 x float].
128 ///
129 /// \headerfile <x86intrin.h>
130 ///
131 /// \code
132 /// __m128 _mm_floor_ps(__m128 X);
133 /// \endcode
134 ///
135 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
136 ///
137 /// \param X
138 /// A 128-bit vector of [4 x float] values to be rounded down.
139 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
140 #define _mm_floor_ps(X) _mm_round_ps((X), _MM_FROUND_FLOOR)
141 
142 /// Rounds down each element of the 128-bit vector of [2 x double] to an
143 /// integer and returns the rounded values in a 128-bit vector of
144 /// [2 x double].
145 ///
146 /// \headerfile <x86intrin.h>
147 ///
148 /// \code
149 /// __m128d _mm_floor_pd(__m128d X);
150 /// \endcode
151 ///
152 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
153 ///
154 /// \param X
155 /// A 128-bit vector of [2 x double].
156 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
157 #define _mm_floor_pd(X) _mm_round_pd((X), _MM_FROUND_FLOOR)
158 
159 /// Copies three upper elements of the first 128-bit vector operand to
160 /// the corresponding three upper elements of the 128-bit result vector of
161 /// [4 x float]. Rounds down the lowest element of the second 128-bit vector
162 /// operand to an integer and copies it to the lowest element of the 128-bit
163 /// result vector of [4 x float].
164 ///
165 /// \headerfile <x86intrin.h>
166 ///
167 /// \code
168 /// __m128 _mm_floor_ss(__m128 X, __m128 Y);
169 /// \endcode
170 ///
171 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
172 ///
173 /// \param X
174 /// A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
175 /// copied to the corresponding bits of the result.
176 /// \param Y
177 /// A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
178 /// rounded down to the nearest integer and copied to the corresponding bits
179 /// of the result.
180 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
181 /// values.
182 #define _mm_floor_ss(X, Y) _mm_round_ss((X), (Y), _MM_FROUND_FLOOR)
183 
184 /// Copies the upper element of the first 128-bit vector operand to the
185 /// corresponding upper element of the 128-bit result vector of [2 x double].
186 /// Rounds down the lower element of the second 128-bit vector operand to an
187 /// integer and copies it to the lower element of the 128-bit result vector
188 /// of [2 x double].
189 ///
190 /// \headerfile <x86intrin.h>
191 ///
192 /// \code
193 /// __m128d _mm_floor_sd(__m128d X, __m128d Y);
194 /// \endcode
195 ///
196 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
197 ///
198 /// \param X
199 /// A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
200 /// copied to the corresponding bits of the result.
201 /// \param Y
202 /// A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
203 /// rounded down to the nearest integer and copied to the corresponding bits
204 /// of the result.
205 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
206 /// values.
207 #define _mm_floor_sd(X, Y) _mm_round_sd((X), (Y), _MM_FROUND_FLOOR)
208 
209 /// Rounds each element of the 128-bit vector of [4 x float] to an
210 /// integer value according to the rounding control specified by the second
211 /// argument and returns the rounded values in a 128-bit vector of
212 /// [4 x float].
213 ///
214 /// \headerfile <x86intrin.h>
215 ///
216 /// \code
217 /// __m128 _mm_round_ps(__m128 X, const int M);
218 /// \endcode
219 ///
220 /// This intrinsic corresponds to the <c> VROUNDPS / ROUNDPS </c> instruction.
221 ///
222 /// \param X
223 /// A 128-bit vector of [4 x float].
224 /// \param M
225 /// An integer value that specifies the rounding operation. \n
226 /// Bits [7:4] are reserved. \n
227 /// Bit [3] is a precision exception value: \n
228 /// 0: A normal PE exception is used \n
229 /// 1: The PE field is not updated \n
230 /// Bit [2] is the rounding control source: \n
231 /// 0: Use bits [1:0] of \a M \n
232 /// 1: Use the current MXCSR setting \n
233 /// Bits [1:0] contain the rounding control definition: \n
234 /// 00: Nearest \n
235 /// 01: Downward (toward negative infinity) \n
236 /// 10: Upward (toward positive infinity) \n
237 /// 11: Truncated
238 /// \returns A 128-bit vector of [4 x float] containing the rounded values.
239 #define _mm_round_ps(X, M) \
240  ((__m128)__builtin_ia32_roundps((__v4sf)(__m128)(X), (M)))
241 
242 /// Copies three upper elements of the first 128-bit vector operand to
243 /// the corresponding three upper elements of the 128-bit result vector of
244 /// [4 x float]. Rounds the lowest element of the second 128-bit vector
245 /// operand to an integer value according to the rounding control specified
246 /// by the third argument and copies it to the lowest element of the 128-bit
247 /// result vector of [4 x float].
248 ///
249 /// \headerfile <x86intrin.h>
250 ///
251 /// \code
252 /// __m128 _mm_round_ss(__m128 X, __m128 Y, const int M);
253 /// \endcode
254 ///
255 /// This intrinsic corresponds to the <c> VROUNDSS / ROUNDSS </c> instruction.
256 ///
257 /// \param X
258 /// A 128-bit vector of [4 x float]. The values stored in bits [127:32] are
259 /// copied to the corresponding bits of the result.
260 /// \param Y
261 /// A 128-bit vector of [4 x float]. The value stored in bits [31:0] is
262 /// rounded to the nearest integer using the specified rounding control and
263 /// copied to the corresponding bits of the result.
264 /// \param M
265 /// An integer value that specifies the rounding operation. \n
266 /// Bits [7:4] are reserved. \n
267 /// Bit [3] is a precision exception value: \n
268 /// 0: A normal PE exception is used \n
269 /// 1: The PE field is not updated \n
270 /// Bit [2] is the rounding control source: \n
271 /// 0: Use bits [1:0] of \a M \n
272 /// 1: Use the current MXCSR setting \n
273 /// Bits [1:0] contain the rounding control definition: \n
274 /// 00: Nearest \n
275 /// 01: Downward (toward negative infinity) \n
276 /// 10: Upward (toward positive infinity) \n
277 /// 11: Truncated
278 /// \returns A 128-bit vector of [4 x float] containing the copied and rounded
279 /// values.
280 #define _mm_round_ss(X, Y, M) \
281  ((__m128)__builtin_ia32_roundss((__v4sf)(__m128)(X), (__v4sf)(__m128)(Y), \
282  (M)))
283 
284 /// Rounds each element of the 128-bit vector of [2 x double] to an
285 /// integer value according to the rounding control specified by the second
286 /// argument and returns the rounded values in a 128-bit vector of
287 /// [2 x double].
288 ///
289 /// \headerfile <x86intrin.h>
290 ///
291 /// \code
292 /// __m128d _mm_round_pd(__m128d X, const int M);
293 /// \endcode
294 ///
295 /// This intrinsic corresponds to the <c> VROUNDPD / ROUNDPD </c> instruction.
296 ///
297 /// \param X
298 /// A 128-bit vector of [2 x double].
299 /// \param M
300 /// An integer value that specifies the rounding operation. \n
301 /// Bits [7:4] are reserved. \n
302 /// Bit [3] is a precision exception value: \n
303 /// 0: A normal PE exception is used \n
304 /// 1: The PE field is not updated \n
305 /// Bit [2] is the rounding control source: \n
306 /// 0: Use bits [1:0] of \a M \n
307 /// 1: Use the current MXCSR setting \n
308 /// Bits [1:0] contain the rounding control definition: \n
309 /// 00: Nearest \n
310 /// 01: Downward (toward negative infinity) \n
311 /// 10: Upward (toward positive infinity) \n
312 /// 11: Truncated
313 /// \returns A 128-bit vector of [2 x double] containing the rounded values.
314 #define _mm_round_pd(X, M) \
315  ((__m128d)__builtin_ia32_roundpd((__v2df)(__m128d)(X), (M)))
316 
317 /// Copies the upper element of the first 128-bit vector operand to the
318 /// corresponding upper element of the 128-bit result vector of [2 x double].
319 /// Rounds the lower element of the second 128-bit vector operand to an
320 /// integer value according to the rounding control specified by the third
321 /// argument and copies it to the lower element of the 128-bit result vector
322 /// of [2 x double].
323 ///
324 /// \headerfile <x86intrin.h>
325 ///
326 /// \code
327 /// __m128d _mm_round_sd(__m128d X, __m128d Y, const int M);
328 /// \endcode
329 ///
330 /// This intrinsic corresponds to the <c> VROUNDSD / ROUNDSD </c> instruction.
331 ///
332 /// \param X
333 /// A 128-bit vector of [2 x double]. The value stored in bits [127:64] is
334 /// copied to the corresponding bits of the result.
335 /// \param Y
336 /// A 128-bit vector of [2 x double]. The value stored in bits [63:0] is
337 /// rounded to the nearest integer using the specified rounding control and
338 /// copied to the corresponding bits of the result.
339 /// \param M
340 /// An integer value that specifies the rounding operation. \n
341 /// Bits [7:4] are reserved. \n
342 /// Bit [3] is a precision exception value: \n
343 /// 0: A normal PE exception is used \n
344 /// 1: The PE field is not updated \n
345 /// Bit [2] is the rounding control source: \n
346 /// 0: Use bits [1:0] of \a M \n
347 /// 1: Use the current MXCSR setting \n
348 /// Bits [1:0] contain the rounding control definition: \n
349 /// 00: Nearest \n
350 /// 01: Downward (toward negative infinity) \n
351 /// 10: Upward (toward positive infinity) \n
352 /// 11: Truncated
353 /// \returns A 128-bit vector of [2 x double] containing the copied and rounded
354 /// values.
355 #define _mm_round_sd(X, Y, M) \
356  ((__m128d)__builtin_ia32_roundsd((__v2df)(__m128d)(X), (__v2df)(__m128d)(Y), \
357  (M)))
358 
359 /* SSE4 Packed Blending Intrinsics. */
360 /// Returns a 128-bit vector of [2 x double] where the values are
361 /// selected from either the first or second operand as specified by the
362 /// third operand, the control mask.
363 ///
364 /// \headerfile <x86intrin.h>
365 ///
366 /// \code
367 /// __m128d _mm_blend_pd(__m128d V1, __m128d V2, const int M);
368 /// \endcode
369 ///
370 /// This intrinsic corresponds to the <c> VBLENDPD / BLENDPD </c> instruction.
371 ///
372 /// \param V1
373 /// A 128-bit vector of [2 x double].
374 /// \param V2
375 /// A 128-bit vector of [2 x double].
376 /// \param M
377 /// An immediate integer operand, with mask bits [1:0] specifying how the
378 /// values are to be copied. The position of the mask bit corresponds to the
379 /// index of a copied value. When a mask bit is 0, the corresponding 64-bit
380 /// element in operand \a V1 is copied to the same position in the result.
381 /// When a mask bit is 1, the corresponding 64-bit element in operand \a V2
382 /// is copied to the same position in the result.
383 /// \returns A 128-bit vector of [2 x double] containing the copied values.
384 #define _mm_blend_pd(V1, V2, M) \
385  ((__m128d)__builtin_ia32_blendpd((__v2df)(__m128d)(V1), \
386  (__v2df)(__m128d)(V2), (int)(M)))
387 
388 /// Returns a 128-bit vector of [4 x float] where the values are selected
389 /// from either the first or second operand as specified by the third
390 /// operand, the control mask.
391 ///
392 /// \headerfile <x86intrin.h>
393 ///
394 /// \code
395 /// __m128 _mm_blend_ps(__m128 V1, __m128 V2, const int M);
396 /// \endcode
397 ///
398 /// This intrinsic corresponds to the <c> VBLENDPS / BLENDPS </c> instruction.
399 ///
400 /// \param V1
401 /// A 128-bit vector of [4 x float].
402 /// \param V2
403 /// A 128-bit vector of [4 x float].
404 /// \param M
405 /// An immediate integer operand, with mask bits [3:0] specifying how the
406 /// values are to be copied. The position of the mask bit corresponds to the
407 /// index of a copied value. When a mask bit is 0, the corresponding 32-bit
408 /// element in operand \a V1 is copied to the same position in the result.
409 /// When a mask bit is 1, the corresponding 32-bit element in operand \a V2
410 /// is copied to the same position in the result.
411 /// \returns A 128-bit vector of [4 x float] containing the copied values.
412 #define _mm_blend_ps(V1, V2, M) \
413  ((__m128)__builtin_ia32_blendps((__v4sf)(__m128)(V1), (__v4sf)(__m128)(V2), \
414  (int)(M)))
415 
416 /// Returns a 128-bit vector of [2 x double] where the values are
417 /// selected from either the first or second operand as specified by the
418 /// third operand, the control mask.
419 ///
420 /// \headerfile <x86intrin.h>
421 ///
422 /// This intrinsic corresponds to the <c> VBLENDVPD / BLENDVPD </c> instruction.
423 ///
424 /// \param __V1
425 /// A 128-bit vector of [2 x double].
426 /// \param __V2
427 /// A 128-bit vector of [2 x double].
428 /// \param __M
429 /// A 128-bit vector operand, with mask bits 127 and 63 specifying how the
430 /// values are to be copied. The position of the mask bit corresponds to the
431 /// most significant bit of a copied value. When a mask bit is 0, the
432 /// corresponding 64-bit element in operand \a __V1 is copied to the same
433 /// position in the result. When a mask bit is 1, the corresponding 64-bit
434 /// element in operand \a __V2 is copied to the same position in the result.
435 /// \returns A 128-bit vector of [2 x double] containing the copied values.
436 static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_blendv_pd(__m128d __V1,
437  __m128d __V2,
438  __m128d __M) {
439  return (__m128d)__builtin_ia32_blendvpd((__v2df)__V1, (__v2df)__V2,
440  (__v2df)__M);
441 }
442 
443 /// Returns a 128-bit vector of [4 x float] where the values are
444 /// selected from either the first or second operand as specified by the
445 /// third operand, the control mask.
446 ///
447 /// \headerfile <x86intrin.h>
448 ///
449 /// This intrinsic corresponds to the <c> VBLENDVPS / BLENDVPS </c> instruction.
450 ///
451 /// \param __V1
452 /// A 128-bit vector of [4 x float].
453 /// \param __V2
454 /// A 128-bit vector of [4 x float].
455 /// \param __M
456 /// A 128-bit vector operand, with mask bits 127, 95, 63, and 31 specifying
457 /// how the values are to be copied. The position of the mask bit corresponds
458 /// to the most significant bit of a copied value. When a mask bit is 0, the
459 /// corresponding 32-bit element in operand \a __V1 is copied to the same
460 /// position in the result. When a mask bit is 1, the corresponding 32-bit
461 /// element in operand \a __V2 is copied to the same position in the result.
462 /// \returns A 128-bit vector of [4 x float] containing the copied values.
463 static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_blendv_ps(__m128 __V1,
464  __m128 __V2,
465  __m128 __M) {
466  return (__m128)__builtin_ia32_blendvps((__v4sf)__V1, (__v4sf)__V2,
467  (__v4sf)__M);
468 }
469 
470 /// Returns a 128-bit vector of [16 x i8] where the values are selected
471 /// from either of the first or second operand as specified by the third
472 /// operand, the control mask.
473 ///
474 /// \headerfile <x86intrin.h>
475 ///
476 /// This intrinsic corresponds to the <c> VPBLENDVB / PBLENDVB </c> instruction.
477 ///
478 /// \param __V1
479 /// A 128-bit vector of [16 x i8].
480 /// \param __V2
481 /// A 128-bit vector of [16 x i8].
482 /// \param __M
483 /// A 128-bit vector operand, with mask bits 127, 119, 111...7 specifying
484 /// how the values are to be copied. The position of the mask bit corresponds
485 /// to the most significant bit of a copied value. When a mask bit is 0, the
486 /// corresponding 8-bit element in operand \a __V1 is copied to the same
487 /// position in the result. When a mask bit is 1, the corresponding 8-bit
488 /// element in operand \a __V2 is copied to the same position in the result.
489 /// \returns A 128-bit vector of [16 x i8] containing the copied values.
490 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_blendv_epi8(__m128i __V1,
491  __m128i __V2,
492  __m128i __M) {
493  return (__m128i)__builtin_ia32_pblendvb128((__v16qi)__V1, (__v16qi)__V2,
494  (__v16qi)__M);
495 }
496 
497 /// Returns a 128-bit vector of [8 x i16] where the values are selected
498 /// from either of the first or second operand as specified by the third
499 /// operand, the control mask.
500 ///
501 /// \headerfile <x86intrin.h>
502 ///
503 /// \code
504 /// __m128i _mm_blend_epi16(__m128i V1, __m128i V2, const int M);
505 /// \endcode
506 ///
507 /// This intrinsic corresponds to the <c> VPBLENDW / PBLENDW </c> instruction.
508 ///
509 /// \param V1
510 /// A 128-bit vector of [8 x i16].
511 /// \param V2
512 /// A 128-bit vector of [8 x i16].
513 /// \param M
514 /// An immediate integer operand, with mask bits [7:0] specifying how the
515 /// values are to be copied. The position of the mask bit corresponds to the
516 /// index of a copied value. When a mask bit is 0, the corresponding 16-bit
517 /// element in operand \a V1 is copied to the same position in the result.
518 /// When a mask bit is 1, the corresponding 16-bit element in operand \a V2
519 /// is copied to the same position in the result.
520 /// \returns A 128-bit vector of [8 x i16] containing the copied values.
521 #define _mm_blend_epi16(V1, V2, M) \
522  ((__m128i)__builtin_ia32_pblendw128((__v8hi)(__m128i)(V1), \
523  (__v8hi)(__m128i)(V2), (int)(M)))
524 
525 /* SSE4 Dword Multiply Instructions. */
526 /// Multiples corresponding elements of two 128-bit vectors of [4 x i32]
527 /// and returns the lower 32 bits of the each product in a 128-bit vector of
528 /// [4 x i32].
529 ///
530 /// \headerfile <x86intrin.h>
531 ///
532 /// This intrinsic corresponds to the <c> VPMULLD / PMULLD </c> instruction.
533 ///
534 /// \param __V1
535 /// A 128-bit integer vector.
536 /// \param __V2
537 /// A 128-bit integer vector.
538 /// \returns A 128-bit integer vector containing the products of both operands.
539 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mullo_epi32(__m128i __V1,
540  __m128i __V2) {
541  return (__m128i)((__v4su)__V1 * (__v4su)__V2);
542 }
543 
544 /// Multiplies corresponding even-indexed elements of two 128-bit
545 /// vectors of [4 x i32] and returns a 128-bit vector of [2 x i64]
546 /// containing the products.
547 ///
548 /// \headerfile <x86intrin.h>
549 ///
550 /// This intrinsic corresponds to the <c> VPMULDQ / PMULDQ </c> instruction.
551 ///
552 /// \param __V1
553 /// A 128-bit vector of [4 x i32].
554 /// \param __V2
555 /// A 128-bit vector of [4 x i32].
556 /// \returns A 128-bit vector of [2 x i64] containing the products of both
557 /// operands.
558 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mul_epi32(__m128i __V1,
559  __m128i __V2) {
560  return (__m128i)__builtin_ia32_pmuldq128((__v4si)__V1, (__v4si)__V2);
561 }
562 
563 /* SSE4 Floating Point Dot Product Instructions. */
564 /// Computes the dot product of the two 128-bit vectors of [4 x float]
565 /// and returns it in the elements of the 128-bit result vector of
566 /// [4 x float].
567 ///
568 /// The immediate integer operand controls which input elements
569 /// will contribute to the dot product, and where the final results are
570 /// returned.
571 ///
572 /// \headerfile <x86intrin.h>
573 ///
574 /// \code
575 /// __m128 _mm_dp_ps(__m128 X, __m128 Y, const int M);
576 /// \endcode
577 ///
578 /// This intrinsic corresponds to the <c> VDPPS / DPPS </c> instruction.
579 ///
580 /// \param X
581 /// A 128-bit vector of [4 x float].
582 /// \param Y
583 /// A 128-bit vector of [4 x float].
584 /// \param M
585 /// An immediate integer operand. Mask bits [7:4] determine which elements
586 /// of the input vectors are used, with bit [4] corresponding to the lowest
587 /// element and bit [7] corresponding to the highest element of each [4 x
588 /// float] vector. If a bit is set, the corresponding elements from the two
589 /// input vectors are used as an input for dot product; otherwise that input
590 /// is treated as zero. Bits [3:0] determine which elements of the result
591 /// will receive a copy of the final dot product, with bit [0] corresponding
592 /// to the lowest element and bit [3] corresponding to the highest element of
593 /// each [4 x float] subvector. If a bit is set, the dot product is returned
594 /// in the corresponding element; otherwise that element is set to zero.
595 /// \returns A 128-bit vector of [4 x float] containing the dot product.
596 #define _mm_dp_ps(X, Y, M) \
597  ((__m128)__builtin_ia32_dpps((__v4sf)(__m128)(X), (__v4sf)(__m128)(Y), (M)))
598 
599 /// Computes the dot product of the two 128-bit vectors of [2 x double]
600 /// and returns it in the elements of the 128-bit result vector of
601 /// [2 x double].
602 ///
603 /// The immediate integer operand controls which input
604 /// elements will contribute to the dot product, and where the final results
605 /// are returned.
606 ///
607 /// \headerfile <x86intrin.h>
608 ///
609 /// \code
610 /// __m128d _mm_dp_pd(__m128d X, __m128d Y, const int M);
611 /// \endcode
612 ///
613 /// This intrinsic corresponds to the <c> VDPPD / DPPD </c> instruction.
614 ///
615 /// \param X
616 /// A 128-bit vector of [2 x double].
617 /// \param Y
618 /// A 128-bit vector of [2 x double].
619 /// \param M
620 /// An immediate integer operand. Mask bits [5:4] determine which elements
621 /// of the input vectors are used, with bit [4] corresponding to the lowest
622 /// element and bit [5] corresponding to the highest element of each of [2 x
623 /// double] vector. If a bit is set, the corresponding elements from the two
624 /// input vectors are used as an input for dot product; otherwise that input
625 /// is treated as zero. Bits [1:0] determine which elements of the result
626 /// will receive a copy of the final dot product, with bit [0] corresponding
627 /// to the lowest element and bit [1] corresponding to the highest element of
628 /// each [2 x double] vector. If a bit is set, the dot product is returned in
629 /// the corresponding element; otherwise that element is set to zero.
630 #define _mm_dp_pd(X, Y, M) \
631  ((__m128d)__builtin_ia32_dppd((__v2df)(__m128d)(X), (__v2df)(__m128d)(Y), \
632  (M)))
633 
634 /* SSE4 Streaming Load Hint Instruction. */
635 /// Loads integer values from a 128-bit aligned memory location to a
636 /// 128-bit integer vector.
637 ///
638 /// \headerfile <x86intrin.h>
639 ///
640 /// This intrinsic corresponds to the <c> VMOVNTDQA / MOVNTDQA </c> instruction.
641 ///
642 /// \param __V
643 /// A pointer to a 128-bit aligned memory location that contains the integer
644 /// values.
645 /// \returns A 128-bit integer vector containing the data stored at the
646 /// specified memory location.
647 static __inline__ __m128i __DEFAULT_FN_ATTRS
648 _mm_stream_load_si128(const void *__V) {
649  return (__m128i)__builtin_nontemporal_load((const __v2di *)__V);
650 }
651 
652 /* SSE4 Packed Integer Min/Max Instructions. */
653 /// Compares the corresponding elements of two 128-bit vectors of
654 /// [16 x i8] and returns a 128-bit vector of [16 x i8] containing the lesser
655 /// of the two values.
656 ///
657 /// \headerfile <x86intrin.h>
658 ///
659 /// This intrinsic corresponds to the <c> VPMINSB / PMINSB </c> instruction.
660 ///
661 /// \param __V1
662 /// A 128-bit vector of [16 x i8].
663 /// \param __V2
664 /// A 128-bit vector of [16 x i8]
665 /// \returns A 128-bit vector of [16 x i8] containing the lesser values.
666 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epi8(__m128i __V1,
667  __m128i __V2) {
668  return (__m128i)__builtin_elementwise_min((__v16qs)__V1, (__v16qs)__V2);
669 }
670 
671 /// Compares the corresponding elements of two 128-bit vectors of
672 /// [16 x i8] and returns a 128-bit vector of [16 x i8] containing the
673 /// greater value of the two.
674 ///
675 /// \headerfile <x86intrin.h>
676 ///
677 /// This intrinsic corresponds to the <c> VPMAXSB / PMAXSB </c> instruction.
678 ///
679 /// \param __V1
680 /// A 128-bit vector of [16 x i8].
681 /// \param __V2
682 /// A 128-bit vector of [16 x i8].
683 /// \returns A 128-bit vector of [16 x i8] containing the greater values.
684 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epi8(__m128i __V1,
685  __m128i __V2) {
686  return (__m128i)__builtin_elementwise_max((__v16qs)__V1, (__v16qs)__V2);
687 }
688 
689 /// Compares the corresponding elements of two 128-bit vectors of
690 /// [8 x u16] and returns a 128-bit vector of [8 x u16] containing the lesser
691 /// value of the two.
692 ///
693 /// \headerfile <x86intrin.h>
694 ///
695 /// This intrinsic corresponds to the <c> VPMINUW / PMINUW </c> instruction.
696 ///
697 /// \param __V1
698 /// A 128-bit vector of [8 x u16].
699 /// \param __V2
700 /// A 128-bit vector of [8 x u16].
701 /// \returns A 128-bit vector of [8 x u16] containing the lesser values.
702 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epu16(__m128i __V1,
703  __m128i __V2) {
704  return (__m128i)__builtin_elementwise_min((__v8hu)__V1, (__v8hu)__V2);
705 }
706 
707 /// Compares the corresponding elements of two 128-bit vectors of
708 /// [8 x u16] and returns a 128-bit vector of [8 x u16] containing the
709 /// greater value of the two.
710 ///
711 /// \headerfile <x86intrin.h>
712 ///
713 /// This intrinsic corresponds to the <c> VPMAXUW / PMAXUW </c> instruction.
714 ///
715 /// \param __V1
716 /// A 128-bit vector of [8 x u16].
717 /// \param __V2
718 /// A 128-bit vector of [8 x u16].
719 /// \returns A 128-bit vector of [8 x u16] containing the greater values.
720 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epu16(__m128i __V1,
721  __m128i __V2) {
722  return (__m128i)__builtin_elementwise_max((__v8hu)__V1, (__v8hu)__V2);
723 }
724 
725 /// Compares the corresponding elements of two 128-bit vectors of
726 /// [4 x i32] and returns a 128-bit vector of [4 x i32] containing the lesser
727 /// value of the two.
728 ///
729 /// \headerfile <x86intrin.h>
730 ///
731 /// This intrinsic corresponds to the <c> VPMINSD / PMINSD </c> instruction.
732 ///
733 /// \param __V1
734 /// A 128-bit vector of [4 x i32].
735 /// \param __V2
736 /// A 128-bit vector of [4 x i32].
737 /// \returns A 128-bit vector of [4 x i32] containing the lesser values.
738 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epi32(__m128i __V1,
739  __m128i __V2) {
740  return (__m128i)__builtin_elementwise_min((__v4si)__V1, (__v4si)__V2);
741 }
742 
743 /// Compares the corresponding elements of two 128-bit vectors of
744 /// [4 x i32] and returns a 128-bit vector of [4 x i32] containing the
745 /// greater value of the two.
746 ///
747 /// \headerfile <x86intrin.h>
748 ///
749 /// This intrinsic corresponds to the <c> VPMAXSD / PMAXSD </c> instruction.
750 ///
751 /// \param __V1
752 /// A 128-bit vector of [4 x i32].
753 /// \param __V2
754 /// A 128-bit vector of [4 x i32].
755 /// \returns A 128-bit vector of [4 x i32] containing the greater values.
756 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epi32(__m128i __V1,
757  __m128i __V2) {
758  return (__m128i)__builtin_elementwise_max((__v4si)__V1, (__v4si)__V2);
759 }
760 
761 /// Compares the corresponding elements of two 128-bit vectors of
762 /// [4 x u32] and returns a 128-bit vector of [4 x u32] containing the lesser
763 /// value of the two.
764 ///
765 /// \headerfile <x86intrin.h>
766 ///
767 /// This intrinsic corresponds to the <c> VPMINUD / PMINUD </c> instruction.
768 ///
769 /// \param __V1
770 /// A 128-bit vector of [4 x u32].
771 /// \param __V2
772 /// A 128-bit vector of [4 x u32].
773 /// \returns A 128-bit vector of [4 x u32] containing the lesser values.
774 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epu32(__m128i __V1,
775  __m128i __V2) {
776  return (__m128i)__builtin_elementwise_min((__v4su)__V1, (__v4su)__V2);
777 }
778 
779 /// Compares the corresponding elements of two 128-bit vectors of
780 /// [4 x u32] and returns a 128-bit vector of [4 x u32] containing the
781 /// greater value of the two.
782 ///
783 /// \headerfile <x86intrin.h>
784 ///
785 /// This intrinsic corresponds to the <c> VPMAXUD / PMAXUD </c> instruction.
786 ///
787 /// \param __V1
788 /// A 128-bit vector of [4 x u32].
789 /// \param __V2
790 /// A 128-bit vector of [4 x u32].
791 /// \returns A 128-bit vector of [4 x u32] containing the greater values.
792 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epu32(__m128i __V1,
793  __m128i __V2) {
794  return (__m128i)__builtin_elementwise_max((__v4su)__V1, (__v4su)__V2);
795 }
796 
797 /* SSE4 Insertion and Extraction from XMM Register Instructions. */
798 /// Takes the first argument \a X and inserts an element from the second
799 /// argument \a Y as selected by the third argument \a N. That result then
800 /// has elements zeroed out also as selected by the third argument \a N. The
801 /// resulting 128-bit vector of [4 x float] is then returned.
802 ///
803 /// \headerfile <x86intrin.h>
804 ///
805 /// \code
806 /// __m128 _mm_insert_ps(__m128 X, __m128 Y, const int N);
807 /// \endcode
808 ///
809 /// This intrinsic corresponds to the <c> VINSERTPS </c> instruction.
810 ///
811 /// \param X
812 /// A 128-bit vector source operand of [4 x float]. With the exception of
813 /// those bits in the result copied from parameter \a Y and zeroed by bits
814 /// [3:0] of \a N, all bits from this parameter are copied to the result.
815 /// \param Y
816 /// A 128-bit vector source operand of [4 x float]. One single-precision
817 /// floating-point element from this source, as determined by the immediate
818 /// parameter, is copied to the result.
819 /// \param N
820 /// Specifies which bits from operand \a Y will be copied, which bits in the
821 /// result they will be copied to, and which bits in the result will be
822 /// cleared. The following assignments are made: \n
823 /// Bits [7:6] specify the bits to copy from operand \a Y: \n
824 /// 00: Selects bits [31:0] from operand \a Y. \n
825 /// 01: Selects bits [63:32] from operand \a Y. \n
826 /// 10: Selects bits [95:64] from operand \a Y. \n
827 /// 11: Selects bits [127:96] from operand \a Y. \n
828 /// Bits [5:4] specify the bits in the result to which the selected bits
829 /// from operand \a Y are copied: \n
830 /// 00: Copies the selected bits from \a Y to result bits [31:0]. \n
831 /// 01: Copies the selected bits from \a Y to result bits [63:32]. \n
832 /// 10: Copies the selected bits from \a Y to result bits [95:64]. \n
833 /// 11: Copies the selected bits from \a Y to result bits [127:96]. \n
834 /// Bits[3:0]: If any of these bits are set, the corresponding result
835 /// element is cleared.
836 /// \returns A 128-bit vector of [4 x float] containing the copied
837 /// single-precision floating point elements from the operands.
838 #define _mm_insert_ps(X, Y, N) __builtin_ia32_insertps128((X), (Y), (N))
839 
840 /// Extracts a 32-bit integer from a 128-bit vector of [4 x float] and
841 /// returns it, using the immediate value parameter \a N as a selector.
842 ///
843 /// \headerfile <x86intrin.h>
844 ///
845 /// \code
846 /// int _mm_extract_ps(__m128 X, const int N);
847 /// \endcode
848 ///
849 /// This intrinsic corresponds to the <c> VEXTRACTPS / EXTRACTPS </c>
850 /// instruction.
851 ///
852 /// \param X
853 /// A 128-bit vector of [4 x float].
854 /// \param N
855 /// An immediate value. Bits [1:0] determines which bits from the argument
856 /// \a X are extracted and returned: \n
857 /// 00: Bits [31:0] of parameter \a X are returned. \n
858 /// 01: Bits [63:32] of parameter \a X are returned. \n
859 /// 10: Bits [95:64] of parameter \a X are returned. \n
860 /// 11: Bits [127:96] of parameter \a X are returned.
861 /// \returns A 32-bit integer containing the extracted 32 bits of float data.
862 #define _mm_extract_ps(X, N) \
863  __builtin_bit_cast( \
864  int, __builtin_ia32_vec_ext_v4sf((__v4sf)(__m128)(X), (int)(N)))
865 
866 /* Miscellaneous insert and extract macros. */
867 /* Extract a single-precision float from X at index N into D. */
868 #define _MM_EXTRACT_FLOAT(D, X, N) \
869  do { \
870  (D) = __builtin_ia32_vec_ext_v4sf((__v4sf)(__m128)(X), (int)(N)); \
871  } while (0)
872 
873 /* Or together 2 sets of indexes (X and Y) with the zeroing bits (Z) to create
874  an index suitable for _mm_insert_ps. */
875 #define _MM_MK_INSERTPS_NDX(X, Y, Z) (((X) << 6) | ((Y) << 4) | (Z))
876 
877 /* Extract a float from X at index N into the first index of the return. */
878 #define _MM_PICK_OUT_PS(X, N) \
879  _mm_insert_ps(_mm_setzero_ps(), (X), _MM_MK_INSERTPS_NDX((N), 0, 0x0e))
880 
881 /* Insert int into packed integer array at index. */
882 /// Constructs a 128-bit vector of [16 x i8] by first making a copy of
883 /// the 128-bit integer vector parameter, and then inserting the lower 8 bits
884 /// of an integer parameter \a I into an offset specified by the immediate
885 /// value parameter \a N.
886 ///
887 /// \headerfile <x86intrin.h>
888 ///
889 /// \code
890 /// __m128i _mm_insert_epi8(__m128i X, int I, const int N);
891 /// \endcode
892 ///
893 /// This intrinsic corresponds to the <c> VPINSRB / PINSRB </c> instruction.
894 ///
895 /// \param X
896 /// A 128-bit integer vector of [16 x i8]. This vector is copied to the
897 /// result and then one of the sixteen elements in the result vector is
898 /// replaced by the lower 8 bits of \a I.
899 /// \param I
900 /// An integer. The lower 8 bits of this operand are written to the result
901 /// beginning at the offset specified by \a N.
902 /// \param N
903 /// An immediate value. Bits [3:0] specify the bit offset in the result at
904 /// which the lower 8 bits of \a I are written. \n
905 /// 0000: Bits [7:0] of the result are used for insertion. \n
906 /// 0001: Bits [15:8] of the result are used for insertion. \n
907 /// 0010: Bits [23:16] of the result are used for insertion. \n
908 /// 0011: Bits [31:24] of the result are used for insertion. \n
909 /// 0100: Bits [39:32] of the result are used for insertion. \n
910 /// 0101: Bits [47:40] of the result are used for insertion. \n
911 /// 0110: Bits [55:48] of the result are used for insertion. \n
912 /// 0111: Bits [63:56] of the result are used for insertion. \n
913 /// 1000: Bits [71:64] of the result are used for insertion. \n
914 /// 1001: Bits [79:72] of the result are used for insertion. \n
915 /// 1010: Bits [87:80] of the result are used for insertion. \n
916 /// 1011: Bits [95:88] of the result are used for insertion. \n
917 /// 1100: Bits [103:96] of the result are used for insertion. \n
918 /// 1101: Bits [111:104] of the result are used for insertion. \n
919 /// 1110: Bits [119:112] of the result are used for insertion. \n
920 /// 1111: Bits [127:120] of the result are used for insertion.
921 /// \returns A 128-bit integer vector containing the constructed values.
922 #define _mm_insert_epi8(X, I, N) \
923  ((__m128i)__builtin_ia32_vec_set_v16qi((__v16qi)(__m128i)(X), (int)(I), \
924  (int)(N)))
925 
926 /// Constructs a 128-bit vector of [4 x i32] by first making a copy of
927 /// the 128-bit integer vector parameter, and then inserting the 32-bit
928 /// integer parameter \a I at the offset specified by the immediate value
929 /// parameter \a N.
930 ///
931 /// \headerfile <x86intrin.h>
932 ///
933 /// \code
934 /// __m128i _mm_insert_epi32(__m128i X, int I, const int N);
935 /// \endcode
936 ///
937 /// This intrinsic corresponds to the <c> VPINSRD / PINSRD </c> instruction.
938 ///
939 /// \param X
940 /// A 128-bit integer vector of [4 x i32]. This vector is copied to the
941 /// result and then one of the four elements in the result vector is
942 /// replaced by \a I.
943 /// \param I
944 /// A 32-bit integer that is written to the result beginning at the offset
945 /// specified by \a N.
946 /// \param N
947 /// An immediate value. Bits [1:0] specify the bit offset in the result at
948 /// which the integer \a I is written. \n
949 /// 00: Bits [31:0] of the result are used for insertion. \n
950 /// 01: Bits [63:32] of the result are used for insertion. \n
951 /// 10: Bits [95:64] of the result are used for insertion. \n
952 /// 11: Bits [127:96] of the result are used for insertion.
953 /// \returns A 128-bit integer vector containing the constructed values.
954 #define _mm_insert_epi32(X, I, N) \
955  ((__m128i)__builtin_ia32_vec_set_v4si((__v4si)(__m128i)(X), (int)(I), \
956  (int)(N)))
957 
958 #ifdef __x86_64__
959 /// Constructs a 128-bit vector of [2 x i64] by first making a copy of
960 /// the 128-bit integer vector parameter, and then inserting the 64-bit
961 /// integer parameter \a I, using the immediate value parameter \a N as an
962 /// insertion location selector.
963 ///
964 /// \headerfile <x86intrin.h>
965 ///
966 /// \code
967 /// __m128i _mm_insert_epi64(__m128i X, long long I, const int N);
968 /// \endcode
969 ///
970 /// This intrinsic corresponds to the <c> VPINSRQ / PINSRQ </c> instruction.
971 ///
972 /// \param X
973 /// A 128-bit integer vector of [2 x i64]. This vector is copied to the
974 /// result and then one of the two elements in the result vector is replaced
975 /// by \a I.
976 /// \param I
977 /// A 64-bit integer that is written to the result beginning at the offset
978 /// specified by \a N.
979 /// \param N
980 /// An immediate value. Bit [0] specifies the bit offset in the result at
981 /// which the integer \a I is written. \n
982 /// 0: Bits [63:0] of the result are used for insertion. \n
983 /// 1: Bits [127:64] of the result are used for insertion. \n
984 /// \returns A 128-bit integer vector containing the constructed values.
985 #define _mm_insert_epi64(X, I, N) \
986  ((__m128i)__builtin_ia32_vec_set_v2di((__v2di)(__m128i)(X), (long long)(I), \
987  (int)(N)))
988 #endif /* __x86_64__ */
989 
990 /* Extract int from packed integer array at index. This returns the element
991  * as a zero extended value, so it is unsigned.
992  */
993 /// Extracts an 8-bit element from the 128-bit integer vector of
994 /// [16 x i8], using the immediate value parameter \a N as a selector.
995 ///
996 /// \headerfile <x86intrin.h>
997 ///
998 /// \code
999 /// int _mm_extract_epi8(__m128i X, const int N);
1000 /// \endcode
1001 ///
1002 /// This intrinsic corresponds to the <c> VPEXTRB / PEXTRB </c> instruction.
1003 ///
1004 /// \param X
1005 /// A 128-bit integer vector.
1006 /// \param N
1007 /// An immediate value. Bits [3:0] specify which 8-bit vector element from
1008 /// the argument \a X to extract and copy to the result. \n
1009 /// 0000: Bits [7:0] of parameter \a X are extracted. \n
1010 /// 0001: Bits [15:8] of the parameter \a X are extracted. \n
1011 /// 0010: Bits [23:16] of the parameter \a X are extracted. \n
1012 /// 0011: Bits [31:24] of the parameter \a X are extracted. \n
1013 /// 0100: Bits [39:32] of the parameter \a X are extracted. \n
1014 /// 0101: Bits [47:40] of the parameter \a X are extracted. \n
1015 /// 0110: Bits [55:48] of the parameter \a X are extracted. \n
1016 /// 0111: Bits [63:56] of the parameter \a X are extracted. \n
1017 /// 1000: Bits [71:64] of the parameter \a X are extracted. \n
1018 /// 1001: Bits [79:72] of the parameter \a X are extracted. \n
1019 /// 1010: Bits [87:80] of the parameter \a X are extracted. \n
1020 /// 1011: Bits [95:88] of the parameter \a X are extracted. \n
1021 /// 1100: Bits [103:96] of the parameter \a X are extracted. \n
1022 /// 1101: Bits [111:104] of the parameter \a X are extracted. \n
1023 /// 1110: Bits [119:112] of the parameter \a X are extracted. \n
1024 /// 1111: Bits [127:120] of the parameter \a X are extracted.
1025 /// \returns An unsigned integer, whose lower 8 bits are selected from the
1026 /// 128-bit integer vector parameter and the remaining bits are assigned
1027 /// zeros.
1028 #define _mm_extract_epi8(X, N) \
1029  ((int)(unsigned char)__builtin_ia32_vec_ext_v16qi((__v16qi)(__m128i)(X), \
1030  (int)(N)))
1031 
1032 /// Extracts a 32-bit element from the 128-bit integer vector of
1033 /// [4 x i32], using the immediate value parameter \a N as a selector.
1034 ///
1035 /// \headerfile <x86intrin.h>
1036 ///
1037 /// \code
1038 /// int _mm_extract_epi32(__m128i X, const int N);
1039 /// \endcode
1040 ///
1041 /// This intrinsic corresponds to the <c> VPEXTRD / PEXTRD </c> instruction.
1042 ///
1043 /// \param X
1044 /// A 128-bit integer vector.
1045 /// \param N
1046 /// An immediate value. Bits [1:0] specify which 32-bit vector element from
1047 /// the argument \a X to extract and copy to the result. \n
1048 /// 00: Bits [31:0] of the parameter \a X are extracted. \n
1049 /// 01: Bits [63:32] of the parameter \a X are extracted. \n
1050 /// 10: Bits [95:64] of the parameter \a X are extracted. \n
1051 /// 11: Bits [127:96] of the parameter \a X are exracted.
1052 /// \returns An integer, whose lower 32 bits are selected from the 128-bit
1053 /// integer vector parameter and the remaining bits are assigned zeros.
1054 #define _mm_extract_epi32(X, N) \
1055  ((int)__builtin_ia32_vec_ext_v4si((__v4si)(__m128i)(X), (int)(N)))
1056 
1057 /// Extracts a 64-bit element from the 128-bit integer vector of
1058 /// [2 x i64], using the immediate value parameter \a N as a selector.
1059 ///
1060 /// \headerfile <x86intrin.h>
1061 ///
1062 /// \code
1063 /// long long _mm_extract_epi64(__m128i X, const int N);
1064 /// \endcode
1065 ///
1066 /// This intrinsic corresponds to the <c> VPEXTRQ / PEXTRQ </c> instruction
1067 /// in 64-bit mode.
1068 ///
1069 /// \param X
1070 /// A 128-bit integer vector.
1071 /// \param N
1072 /// An immediate value. Bit [0] specifies which 64-bit vector element from
1073 /// the argument \a X to return. \n
1074 /// 0: Bits [63:0] are returned. \n
1075 /// 1: Bits [127:64] are returned. \n
1076 /// \returns A 64-bit integer.
1077 #define _mm_extract_epi64(X, N) \
1078  ((long long)__builtin_ia32_vec_ext_v2di((__v2di)(__m128i)(X), (int)(N)))
1079 
1080 /* SSE4 128-bit Packed Integer Comparisons. */
1081 /// Tests whether the specified bits in a 128-bit integer vector are all
1082 /// zeros.
1083 ///
1084 /// \headerfile <x86intrin.h>
1085 ///
1086 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1087 ///
1088 /// \param __M
1089 /// A 128-bit integer vector containing the bits to be tested.
1090 /// \param __V
1091 /// A 128-bit integer vector selecting which bits to test in operand \a __M.
1092 /// \returns TRUE if the specified bits are all zeros; FALSE otherwise.
1093 static __inline__ int __DEFAULT_FN_ATTRS _mm_testz_si128(__m128i __M,
1094  __m128i __V) {
1095  return __builtin_ia32_ptestz128((__v2di)__M, (__v2di)__V);
1096 }
1097 
1098 /// Tests whether the specified bits in a 128-bit integer vector are all
1099 /// ones.
1100 ///
1101 /// \headerfile <x86intrin.h>
1102 ///
1103 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1104 ///
1105 /// \param __M
1106 /// A 128-bit integer vector containing the bits to be tested.
1107 /// \param __V
1108 /// A 128-bit integer vector selecting which bits to test in operand \a __M.
1109 /// \returns TRUE if the specified bits are all ones; FALSE otherwise.
1110 static __inline__ int __DEFAULT_FN_ATTRS _mm_testc_si128(__m128i __M,
1111  __m128i __V) {
1112  return __builtin_ia32_ptestc128((__v2di)__M, (__v2di)__V);
1113 }
1114 
1115 /// Tests whether the specified bits in a 128-bit integer vector are
1116 /// neither all zeros nor all ones.
1117 ///
1118 /// \headerfile <x86intrin.h>
1119 ///
1120 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1121 ///
1122 /// \param __M
1123 /// A 128-bit integer vector containing the bits to be tested.
1124 /// \param __V
1125 /// A 128-bit integer vector selecting which bits to test in operand \a __M.
1126 /// \returns TRUE if the specified bits are neither all zeros nor all ones;
1127 /// FALSE otherwise.
1128 static __inline__ int __DEFAULT_FN_ATTRS _mm_testnzc_si128(__m128i __M,
1129  __m128i __V) {
1130  return __builtin_ia32_ptestnzc128((__v2di)__M, (__v2di)__V);
1131 }
1132 
1133 /// Tests whether the specified bits in a 128-bit integer vector are all
1134 /// ones.
1135 ///
1136 /// \headerfile <x86intrin.h>
1137 ///
1138 /// \code
1139 /// int _mm_test_all_ones(__m128i V);
1140 /// \endcode
1141 ///
1142 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1143 ///
1144 /// \param V
1145 /// A 128-bit integer vector containing the bits to be tested.
1146 /// \returns TRUE if the bits specified in the operand are all set to 1; FALSE
1147 /// otherwise.
1148 #define _mm_test_all_ones(V) _mm_testc_si128((V), _mm_set1_epi32(-1))
1149 
1150 /// Tests whether the specified bits in a 128-bit integer vector are
1151 /// neither all zeros nor all ones.
1152 ///
1153 /// \headerfile <x86intrin.h>
1154 ///
1155 /// \code
1156 /// int _mm_test_mix_ones_zeros(__m128i M, __m128i V);
1157 /// \endcode
1158 ///
1159 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1160 ///
1161 /// \param M
1162 /// A 128-bit integer vector containing the bits to be tested.
1163 /// \param V
1164 /// A 128-bit integer vector selecting which bits to test in operand \a M.
1165 /// \returns TRUE if the specified bits are neither all zeros nor all ones;
1166 /// FALSE otherwise.
1167 #define _mm_test_mix_ones_zeros(M, V) _mm_testnzc_si128((M), (V))
1168 
1169 /// Tests whether the specified bits in a 128-bit integer vector are all
1170 /// zeros.
1171 ///
1172 /// \headerfile <x86intrin.h>
1173 ///
1174 /// \code
1175 /// int _mm_test_all_zeros(__m128i M, __m128i V);
1176 /// \endcode
1177 ///
1178 /// This intrinsic corresponds to the <c> VPTEST / PTEST </c> instruction.
1179 ///
1180 /// \param M
1181 /// A 128-bit integer vector containing the bits to be tested.
1182 /// \param V
1183 /// A 128-bit integer vector selecting which bits to test in operand \a M.
1184 /// \returns TRUE if the specified bits are all zeros; FALSE otherwise.
1185 #define _mm_test_all_zeros(M, V) _mm_testz_si128((M), (V))
1186 
1187 /* SSE4 64-bit Packed Integer Comparisons. */
1188 /// Compares each of the corresponding 64-bit values of the 128-bit
1189 /// integer vectors for equality.
1190 ///
1191 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1192 ///
1193 /// \headerfile <x86intrin.h>
1194 ///
1195 /// This intrinsic corresponds to the <c> VPCMPEQQ / PCMPEQQ </c> instruction.
1196 ///
1197 /// \param __V1
1198 /// A 128-bit integer vector.
1199 /// \param __V2
1200 /// A 128-bit integer vector.
1201 /// \returns A 128-bit integer vector containing the comparison results.
1202 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpeq_epi64(__m128i __V1,
1203  __m128i __V2) {
1204  return (__m128i)((__v2di)__V1 == (__v2di)__V2);
1205 }
1206 
1207 /* SSE4 Packed Integer Sign-Extension. */
1208 /// Sign-extends each of the lower eight 8-bit integer elements of a
1209 /// 128-bit vector of [16 x i8] to 16-bit values and returns them in a
1210 /// 128-bit vector of [8 x i16]. The upper eight elements of the input vector
1211 /// are unused.
1212 ///
1213 /// \headerfile <x86intrin.h>
1214 ///
1215 /// This intrinsic corresponds to the <c> VPMOVSXBW / PMOVSXBW </c> instruction.
1216 ///
1217 /// \param __V
1218 /// A 128-bit vector of [16 x i8]. The lower eight 8-bit elements are
1219 /// sign-extended to 16-bit values.
1220 /// \returns A 128-bit vector of [8 x i16] containing the sign-extended values.
1221 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi16(__m128i __V) {
1222  /* This function always performs a signed extension, but __v16qi is a char
1223  which may be signed or unsigned, so use __v16qs. */
1224  return (__m128i) __builtin_convertvector(
1225  __builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3, 4, 5, 6,
1226  7),
1227  __v8hi);
1228 }
1229 
1230 /// Sign-extends each of the lower four 8-bit integer elements of a
1231 /// 128-bit vector of [16 x i8] to 32-bit values and returns them in a
1232 /// 128-bit vector of [4 x i32]. The upper twelve elements of the input
1233 /// vector are unused.
1234 ///
1235 /// \headerfile <x86intrin.h>
1236 ///
1237 /// This intrinsic corresponds to the <c> VPMOVSXBD / PMOVSXBD </c> instruction.
1238 ///
1239 /// \param __V
1240 /// A 128-bit vector of [16 x i8]. The lower four 8-bit elements are
1241 /// sign-extended to 32-bit values.
1242 /// \returns A 128-bit vector of [4 x i32] containing the sign-extended values.
1243 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi32(__m128i __V) {
1244  /* This function always performs a signed extension, but __v16qi is a char
1245  which may be signed or unsigned, so use __v16qs. */
1246  return (__m128i) __builtin_convertvector(
1247  __builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1, 2, 3), __v4si);
1248 }
1249 
1250 /// Sign-extends each of the lower two 8-bit integer elements of a
1251 /// 128-bit integer vector of [16 x i8] to 64-bit values and returns them in
1252 /// a 128-bit vector of [2 x i64]. The upper fourteen elements of the input
1253 /// vector are unused.
1254 ///
1255 /// \headerfile <x86intrin.h>
1256 ///
1257 /// This intrinsic corresponds to the <c> VPMOVSXBQ / PMOVSXBQ </c> instruction.
1258 ///
1259 /// \param __V
1260 /// A 128-bit vector of [16 x i8]. The lower two 8-bit elements are
1261 /// sign-extended to 64-bit values.
1262 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
1263 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi64(__m128i __V) {
1264  /* This function always performs a signed extension, but __v16qi is a char
1265  which may be signed or unsigned, so use __v16qs. */
1266  return (__m128i) __builtin_convertvector(
1267  __builtin_shufflevector((__v16qs)__V, (__v16qs)__V, 0, 1), __v2di);
1268 }
1269 
1270 /// Sign-extends each of the lower four 16-bit integer elements of a
1271 /// 128-bit integer vector of [8 x i16] to 32-bit values and returns them in
1272 /// a 128-bit vector of [4 x i32]. The upper four elements of the input
1273 /// vector are unused.
1274 ///
1275 /// \headerfile <x86intrin.h>
1276 ///
1277 /// This intrinsic corresponds to the <c> VPMOVSXWD / PMOVSXWD </c> instruction.
1278 ///
1279 /// \param __V
1280 /// A 128-bit vector of [8 x i16]. The lower four 16-bit elements are
1281 /// sign-extended to 32-bit values.
1282 /// \returns A 128-bit vector of [4 x i32] containing the sign-extended values.
1283 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi16_epi32(__m128i __V) {
1284  return (__m128i) __builtin_convertvector(
1285  __builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1, 2, 3), __v4si);
1286 }
1287 
1288 /// Sign-extends each of the lower two 16-bit integer elements of a
1289 /// 128-bit integer vector of [8 x i16] to 64-bit values and returns them in
1290 /// a 128-bit vector of [2 x i64]. The upper six elements of the input
1291 /// vector are unused.
1292 ///
1293 /// \headerfile <x86intrin.h>
1294 ///
1295 /// This intrinsic corresponds to the <c> VPMOVSXWQ / PMOVSXWQ </c> instruction.
1296 ///
1297 /// \param __V
1298 /// A 128-bit vector of [8 x i16]. The lower two 16-bit elements are
1299 /// sign-extended to 64-bit values.
1300 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
1301 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi16_epi64(__m128i __V) {
1302  return (__m128i) __builtin_convertvector(
1303  __builtin_shufflevector((__v8hi)__V, (__v8hi)__V, 0, 1), __v2di);
1304 }
1305 
1306 /// Sign-extends each of the lower two 32-bit integer elements of a
1307 /// 128-bit integer vector of [4 x i32] to 64-bit values and returns them in
1308 /// a 128-bit vector of [2 x i64]. The upper two elements of the input vector
1309 /// are unused.
1310 ///
1311 /// \headerfile <x86intrin.h>
1312 ///
1313 /// This intrinsic corresponds to the <c> VPMOVSXDQ / PMOVSXDQ </c> instruction.
1314 ///
1315 /// \param __V
1316 /// A 128-bit vector of [4 x i32]. The lower two 32-bit elements are
1317 /// sign-extended to 64-bit values.
1318 /// \returns A 128-bit vector of [2 x i64] containing the sign-extended values.
1319 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi32_epi64(__m128i __V) {
1320  return (__m128i) __builtin_convertvector(
1321  __builtin_shufflevector((__v4si)__V, (__v4si)__V, 0, 1), __v2di);
1322 }
1323 
1324 /* SSE4 Packed Integer Zero-Extension. */
1325 /// Zero-extends each of the lower eight 8-bit integer elements of a
1326 /// 128-bit vector of [16 x i8] to 16-bit values and returns them in a
1327 /// 128-bit vector of [8 x i16]. The upper eight elements of the input vector
1328 /// are unused.
1329 ///
1330 /// \headerfile <x86intrin.h>
1331 ///
1332 /// This intrinsic corresponds to the <c> VPMOVZXBW / PMOVZXBW </c> instruction.
1333 ///
1334 /// \param __V
1335 /// A 128-bit vector of [16 x i8]. The lower eight 8-bit elements are
1336 /// zero-extended to 16-bit values.
1337 /// \returns A 128-bit vector of [8 x i16] containing the zero-extended values.
1338 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi16(__m128i __V) {
1339  return (__m128i) __builtin_convertvector(
1340  __builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3, 4, 5, 6,
1341  7),
1342  __v8hi);
1343 }
1344 
1345 /// Zero-extends each of the lower four 8-bit integer elements of a
1346 /// 128-bit vector of [16 x i8] to 32-bit values and returns them in a
1347 /// 128-bit vector of [4 x i32]. The upper twelve elements of the input
1348 /// vector are unused.
1349 ///
1350 /// \headerfile <x86intrin.h>
1351 ///
1352 /// This intrinsic corresponds to the <c> VPMOVZXBD / PMOVZXBD </c> instruction.
1353 ///
1354 /// \param __V
1355 /// A 128-bit vector of [16 x i8]. The lower four 8-bit elements are
1356 /// zero-extended to 32-bit values.
1357 /// \returns A 128-bit vector of [4 x i32] containing the zero-extended values.
1358 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi32(__m128i __V) {
1359  return (__m128i) __builtin_convertvector(
1360  __builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1, 2, 3), __v4si);
1361 }
1362 
1363 /// Zero-extends each of the lower two 8-bit integer elements of a
1364 /// 128-bit integer vector of [16 x i8] to 64-bit values and returns them in
1365 /// a 128-bit vector of [2 x i64]. The upper fourteen elements of the input
1366 /// vector are unused.
1367 ///
1368 /// \headerfile <x86intrin.h>
1369 ///
1370 /// This intrinsic corresponds to the <c> VPMOVZXBQ / PMOVZXBQ </c> instruction.
1371 ///
1372 /// \param __V
1373 /// A 128-bit vector of [16 x i8]. The lower two 8-bit elements are
1374 /// zero-extended to 64-bit values.
1375 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
1376 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi64(__m128i __V) {
1377  return (__m128i) __builtin_convertvector(
1378  __builtin_shufflevector((__v16qu)__V, (__v16qu)__V, 0, 1), __v2di);
1379 }
1380 
1381 /// Zero-extends each of the lower four 16-bit integer elements of a
1382 /// 128-bit integer vector of [8 x i16] to 32-bit values and returns them in
1383 /// a 128-bit vector of [4 x i32]. The upper four elements of the input
1384 /// vector are unused.
1385 ///
1386 /// \headerfile <x86intrin.h>
1387 ///
1388 /// This intrinsic corresponds to the <c> VPMOVZXWD / PMOVZXWD </c> instruction.
1389 ///
1390 /// \param __V
1391 /// A 128-bit vector of [8 x i16]. The lower four 16-bit elements are
1392 /// zero-extended to 32-bit values.
1393 /// \returns A 128-bit vector of [4 x i32] containing the zero-extended values.
1394 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu16_epi32(__m128i __V) {
1395  return (__m128i) __builtin_convertvector(
1396  __builtin_shufflevector((__v8hu)__V, (__v8hu)__V, 0, 1, 2, 3), __v4si);
1397 }
1398 
1399 /// Zero-extends each of the lower two 16-bit integer elements of a
1400 /// 128-bit integer vector of [8 x i16] to 64-bit values and returns them in
1401 /// a 128-bit vector of [2 x i64]. The upper six elements of the input vector
1402 /// are unused.
1403 ///
1404 /// \headerfile <x86intrin.h>
1405 ///
1406 /// This intrinsic corresponds to the <c> VPMOVZXWQ / PMOVZXWQ </c> instruction.
1407 ///
1408 /// \param __V
1409 /// A 128-bit vector of [8 x i16]. The lower two 16-bit elements are
1410 /// zero-extended to 64-bit values.
1411 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
1412 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu16_epi64(__m128i __V) {
1413  return (__m128i) __builtin_convertvector(
1414  __builtin_shufflevector((__v8hu)__V, (__v8hu)__V, 0, 1), __v2di);
1415 }
1416 
1417 /// Zero-extends each of the lower two 32-bit integer elements of a
1418 /// 128-bit integer vector of [4 x i32] to 64-bit values and returns them in
1419 /// a 128-bit vector of [2 x i64]. The upper two elements of the input vector
1420 /// are unused.
1421 ///
1422 /// \headerfile <x86intrin.h>
1423 ///
1424 /// This intrinsic corresponds to the <c> VPMOVZXDQ / PMOVZXDQ </c> instruction.
1425 ///
1426 /// \param __V
1427 /// A 128-bit vector of [4 x i32]. The lower two 32-bit elements are
1428 /// zero-extended to 64-bit values.
1429 /// \returns A 128-bit vector of [2 x i64] containing the zero-extended values.
1430 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu32_epi64(__m128i __V) {
1431  return (__m128i) __builtin_convertvector(
1432  __builtin_shufflevector((__v4su)__V, (__v4su)__V, 0, 1), __v2di);
1433 }
1434 
1435 /* SSE4 Pack with Unsigned Saturation. */
1436 /// Converts, with saturation, 32-bit signed integers from both 128-bit integer
1437 /// vector operands into 16-bit unsigned integers, and returns the packed
1438 /// result.
1439 ///
1440 /// Values greater than 0xFFFF are saturated to 0xFFFF. Values less than
1441 /// 0x0000 are saturated to 0x0000.
1442 ///
1443 /// \headerfile <x86intrin.h>
1444 ///
1445 /// This intrinsic corresponds to the <c> VPACKUSDW / PACKUSDW </c> instruction.
1446 ///
1447 /// \param __V1
1448 /// A 128-bit vector of [4 x i32]. The converted [4 x i16] values are
1449 /// written to the lower 64 bits of the result.
1450 /// \param __V2
1451 /// A 128-bit vector of [4 x i32]. The converted [4 x i16] values are
1452 /// written to the higher 64 bits of the result.
1453 /// \returns A 128-bit vector of [8 x i16] containing the converted values.
1454 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_packus_epi32(__m128i __V1,
1455  __m128i __V2) {
1456  return (__m128i)__builtin_ia32_packusdw128((__v4si)__V1, (__v4si)__V2);
1457 }
1458 
1459 /* SSE4 Multiple Packed Sums of Absolute Difference. */
1460 /// Subtracts 8-bit unsigned integer values and computes the absolute
1461 /// values of the differences to the corresponding bits in the destination.
1462 /// Then sums of the absolute differences are returned according to the bit
1463 /// fields in the immediate operand.
1464 ///
1465 /// \headerfile <x86intrin.h>
1466 ///
1467 /// \code
1468 /// __m128i _mm_mpsadbw_epu8(__m128i X, __m128i Y, const int M);
1469 /// \endcode
1470 ///
1471 /// This intrinsic corresponds to the <c> VMPSADBW / MPSADBW </c> instruction.
1472 ///
1473 /// \param X
1474 /// A 128-bit vector of [16 x i8].
1475 /// \param Y
1476 /// A 128-bit vector of [16 x i8].
1477 /// \param M
1478 /// An 8-bit immediate operand specifying how the absolute differences are to
1479 /// be calculated, according to the following algorithm:
1480 /// \code
1481 /// // M2 represents bit 2 of the immediate operand
1482 /// // M10 represents bits [1:0] of the immediate operand
1483 /// i = M2 * 4;
1484 /// j = M10 * 4;
1485 /// for (k = 0; k < 8; k = k + 1) {
1486 /// d0 = abs(X[i + k + 0] - Y[j + 0]);
1487 /// d1 = abs(X[i + k + 1] - Y[j + 1]);
1488 /// d2 = abs(X[i + k + 2] - Y[j + 2]);
1489 /// d3 = abs(X[i + k + 3] - Y[j + 3]);
1490 /// r[k] = d0 + d1 + d2 + d3;
1491 /// }
1492 /// \endcode
1493 /// \returns A 128-bit integer vector containing the sums of the sets of
1494 /// absolute differences between both operands.
1495 #define _mm_mpsadbw_epu8(X, Y, M) \
1496  ((__m128i)__builtin_ia32_mpsadbw128((__v16qi)(__m128i)(X), \
1497  (__v16qi)(__m128i)(Y), (M)))
1498 
1499 /// Finds the minimum unsigned 16-bit element in the input 128-bit
1500 /// vector of [8 x u16] and returns it and along with its index.
1501 ///
1502 /// \headerfile <x86intrin.h>
1503 ///
1504 /// This intrinsic corresponds to the <c> VPHMINPOSUW / PHMINPOSUW </c>
1505 /// instruction.
1506 ///
1507 /// \param __V
1508 /// A 128-bit vector of [8 x u16].
1509 /// \returns A 128-bit value where bits [15:0] contain the minimum value found
1510 /// in parameter \a __V, bits [18:16] contain the index of the minimum value
1511 /// and the remaining bits are set to 0.
1512 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_minpos_epu16(__m128i __V) {
1513  return (__m128i)__builtin_ia32_phminposuw128((__v8hi)__V);
1514 }
1515 
1516 /* Handle the sse4.2 definitions here. */
1517 
1518 /* These definitions are normally in nmmintrin.h, but gcc puts them in here
1519  so we'll do the same. */
1520 
1521 #undef __DEFAULT_FN_ATTRS
1522 #define __DEFAULT_FN_ATTRS \
1523  __attribute__((__always_inline__, __nodebug__, __target__("sse4.2")))
1524 
1525 /* These specify the type of data that we're comparing. */
1526 #define _SIDD_UBYTE_OPS 0x00
1527 #define _SIDD_UWORD_OPS 0x01
1528 #define _SIDD_SBYTE_OPS 0x02
1529 #define _SIDD_SWORD_OPS 0x03
1530 
1531 /* These specify the type of comparison operation. */
1532 #define _SIDD_CMP_EQUAL_ANY 0x00
1533 #define _SIDD_CMP_RANGES 0x04
1534 #define _SIDD_CMP_EQUAL_EACH 0x08
1535 #define _SIDD_CMP_EQUAL_ORDERED 0x0c
1536 
1537 /* These macros specify the polarity of the operation. */
1538 #define _SIDD_POSITIVE_POLARITY 0x00
1539 #define _SIDD_NEGATIVE_POLARITY 0x10
1540 #define _SIDD_MASKED_POSITIVE_POLARITY 0x20
1541 #define _SIDD_MASKED_NEGATIVE_POLARITY 0x30
1542 
1543 /* These macros are used in _mm_cmpXstri() to specify the return. */
1544 #define _SIDD_LEAST_SIGNIFICANT 0x00
1545 #define _SIDD_MOST_SIGNIFICANT 0x40
1546 
1547 /* These macros are used in _mm_cmpXstri() to specify the return. */
1548 #define _SIDD_BIT_MASK 0x00
1549 #define _SIDD_UNIT_MASK 0x40
1550 
1551 /* SSE4.2 Packed Comparison Intrinsics. */
1552 /// Uses the immediate operand \a M to perform a comparison of string
1553 /// data with implicitly defined lengths that is contained in source operands
1554 /// \a A and \a B. Returns a 128-bit integer vector representing the result
1555 /// mask of the comparison.
1556 ///
1557 /// \headerfile <x86intrin.h>
1558 ///
1559 /// \code
1560 /// __m128i _mm_cmpistrm(__m128i A, __m128i B, const int M);
1561 /// \endcode
1562 ///
1563 /// This intrinsic corresponds to the <c> VPCMPISTRM / PCMPISTRM </c>
1564 /// instruction.
1565 ///
1566 /// \param A
1567 /// A 128-bit integer vector containing one of the source operands to be
1568 /// compared.
1569 /// \param B
1570 /// A 128-bit integer vector containing one of the source operands to be
1571 /// compared.
1572 /// \param M
1573 /// An 8-bit immediate operand specifying whether the characters are bytes or
1574 /// words, the type of comparison to perform, and the format of the return
1575 /// value. \n
1576 /// Bits [1:0]: Determine source data format. \n
1577 /// 00: 16 unsigned bytes \n
1578 /// 01: 8 unsigned words \n
1579 /// 10: 16 signed bytes \n
1580 /// 11: 8 signed words \n
1581 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1582 /// 00: Subset: Each character in \a B is compared for equality with all
1583 /// the characters in \a A. \n
1584 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1585 /// basis is greater than or equal for even-indexed elements in \a A,
1586 /// and less than or equal for odd-indexed elements in \a A. \n
1587 /// 10: Match: Compare each pair of corresponding characters in \a A and
1588 /// \a B for equality. \n
1589 /// 11: Substring: Search \a B for substring matches of \a A. \n
1590 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1591 /// mask of the comparison results. \n
1592 /// 00: No effect. \n
1593 /// 01: Negate the bit mask. \n
1594 /// 10: No effect. \n
1595 /// 11: Negate the bit mask only for bits with an index less than or equal
1596 /// to the size of \a A or \a B. \n
1597 /// Bit [6]: Determines whether the result is zero-extended or expanded to 16
1598 /// bytes. \n
1599 /// 0: The result is zero-extended to 16 bytes. \n
1600 /// 1: The result is expanded to 16 bytes (this expansion is performed by
1601 /// repeating each bit 8 or 16 times).
1602 /// \returns Returns a 128-bit integer vector representing the result mask of
1603 /// the comparison.
1604 #define _mm_cmpistrm(A, B, M) \
1605  ((__m128i)__builtin_ia32_pcmpistrm128((__v16qi)(__m128i)(A), \
1606  (__v16qi)(__m128i)(B), (int)(M)))
1607 
1608 /// Uses the immediate operand \a M to perform a comparison of string
1609 /// data with implicitly defined lengths that is contained in source operands
1610 /// \a A and \a B. Returns an integer representing the result index of the
1611 /// comparison.
1612 ///
1613 /// \headerfile <x86intrin.h>
1614 ///
1615 /// \code
1616 /// int _mm_cmpistri(__m128i A, __m128i B, const int M);
1617 /// \endcode
1618 ///
1619 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1620 /// instruction.
1621 ///
1622 /// \param A
1623 /// A 128-bit integer vector containing one of the source operands to be
1624 /// compared.
1625 /// \param B
1626 /// A 128-bit integer vector containing one of the source operands to be
1627 /// compared.
1628 /// \param M
1629 /// An 8-bit immediate operand specifying whether the characters are bytes or
1630 /// words, the type of comparison to perform, and the format of the return
1631 /// value. \n
1632 /// Bits [1:0]: Determine source data format. \n
1633 /// 00: 16 unsigned bytes \n
1634 /// 01: 8 unsigned words \n
1635 /// 10: 16 signed bytes \n
1636 /// 11: 8 signed words \n
1637 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1638 /// 00: Subset: Each character in \a B is compared for equality with all
1639 /// the characters in \a A. \n
1640 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1641 /// basis is greater than or equal for even-indexed elements in \a A,
1642 /// and less than or equal for odd-indexed elements in \a A. \n
1643 /// 10: Match: Compare each pair of corresponding characters in \a A and
1644 /// \a B for equality. \n
1645 /// 11: Substring: Search B for substring matches of \a A. \n
1646 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1647 /// mask of the comparison results. \n
1648 /// 00: No effect. \n
1649 /// 01: Negate the bit mask. \n
1650 /// 10: No effect. \n
1651 /// 11: Negate the bit mask only for bits with an index less than or equal
1652 /// to the size of \a A or \a B. \n
1653 /// Bit [6]: Determines whether the index of the lowest set bit or the
1654 /// highest set bit is returned. \n
1655 /// 0: The index of the least significant set bit. \n
1656 /// 1: The index of the most significant set bit. \n
1657 /// \returns Returns an integer representing the result index of the comparison.
1658 #define _mm_cmpistri(A, B, M) \
1659  ((int)__builtin_ia32_pcmpistri128((__v16qi)(__m128i)(A), \
1660  (__v16qi)(__m128i)(B), (int)(M)))
1661 
1662 /// Uses the immediate operand \a M to perform a comparison of string
1663 /// data with explicitly defined lengths that is contained in source operands
1664 /// \a A and \a B. Returns a 128-bit integer vector representing the result
1665 /// mask of the comparison.
1666 ///
1667 /// \headerfile <x86intrin.h>
1668 ///
1669 /// \code
1670 /// __m128i _mm_cmpestrm(__m128i A, int LA, __m128i B, int LB, const int M);
1671 /// \endcode
1672 ///
1673 /// This intrinsic corresponds to the <c> VPCMPESTRM / PCMPESTRM </c>
1674 /// instruction.
1675 ///
1676 /// \param A
1677 /// A 128-bit integer vector containing one of the source operands to be
1678 /// compared.
1679 /// \param LA
1680 /// An integer that specifies the length of the string in \a A.
1681 /// \param B
1682 /// A 128-bit integer vector containing one of the source operands to be
1683 /// compared.
1684 /// \param LB
1685 /// An integer that specifies the length of the string in \a B.
1686 /// \param M
1687 /// An 8-bit immediate operand specifying whether the characters are bytes or
1688 /// words, the type of comparison to perform, and the format of the return
1689 /// value. \n
1690 /// Bits [1:0]: Determine source data format. \n
1691 /// 00: 16 unsigned bytes \n
1692 /// 01: 8 unsigned words \n
1693 /// 10: 16 signed bytes \n
1694 /// 11: 8 signed words \n
1695 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1696 /// 00: Subset: Each character in \a B is compared for equality with all
1697 /// the characters in \a A. \n
1698 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1699 /// basis is greater than or equal for even-indexed elements in \a A,
1700 /// and less than or equal for odd-indexed elements in \a A. \n
1701 /// 10: Match: Compare each pair of corresponding characters in \a A and
1702 /// \a B for equality. \n
1703 /// 11: Substring: Search \a B for substring matches of \a A. \n
1704 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1705 /// mask of the comparison results. \n
1706 /// 00: No effect. \n
1707 /// 01: Negate the bit mask. \n
1708 /// 10: No effect. \n
1709 /// 11: Negate the bit mask only for bits with an index less than or equal
1710 /// to the size of \a A or \a B. \n
1711 /// Bit [6]: Determines whether the result is zero-extended or expanded to 16
1712 /// bytes. \n
1713 /// 0: The result is zero-extended to 16 bytes. \n
1714 /// 1: The result is expanded to 16 bytes (this expansion is performed by
1715 /// repeating each bit 8 or 16 times). \n
1716 /// \returns Returns a 128-bit integer vector representing the result mask of
1717 /// the comparison.
1718 #define _mm_cmpestrm(A, LA, B, LB, M) \
1719  ((__m128i)__builtin_ia32_pcmpestrm128((__v16qi)(__m128i)(A), (int)(LA), \
1720  (__v16qi)(__m128i)(B), (int)(LB), \
1721  (int)(M)))
1722 
1723 /// Uses the immediate operand \a M to perform a comparison of string
1724 /// data with explicitly defined lengths that is contained in source operands
1725 /// \a A and \a B. Returns an integer representing the result index of the
1726 /// comparison.
1727 ///
1728 /// \headerfile <x86intrin.h>
1729 ///
1730 /// \code
1731 /// int _mm_cmpestri(__m128i A, int LA, __m128i B, int LB, const int M);
1732 /// \endcode
1733 ///
1734 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
1735 /// instruction.
1736 ///
1737 /// \param A
1738 /// A 128-bit integer vector containing one of the source operands to be
1739 /// compared.
1740 /// \param LA
1741 /// An integer that specifies the length of the string in \a A.
1742 /// \param B
1743 /// A 128-bit integer vector containing one of the source operands to be
1744 /// compared.
1745 /// \param LB
1746 /// An integer that specifies the length of the string in \a B.
1747 /// \param M
1748 /// An 8-bit immediate operand specifying whether the characters are bytes or
1749 /// words, the type of comparison to perform, and the format of the return
1750 /// value. \n
1751 /// Bits [1:0]: Determine source data format. \n
1752 /// 00: 16 unsigned bytes \n
1753 /// 01: 8 unsigned words \n
1754 /// 10: 16 signed bytes \n
1755 /// 11: 8 signed words \n
1756 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1757 /// 00: Subset: Each character in \a B is compared for equality with all
1758 /// the characters in \a A. \n
1759 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1760 /// basis is greater than or equal for even-indexed elements in \a A,
1761 /// and less than or equal for odd-indexed elements in \a A. \n
1762 /// 10: Match: Compare each pair of corresponding characters in \a A and
1763 /// \a B for equality. \n
1764 /// 11: Substring: Search B for substring matches of \a A. \n
1765 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1766 /// mask of the comparison results. \n
1767 /// 00: No effect. \n
1768 /// 01: Negate the bit mask. \n
1769 /// 10: No effect. \n
1770 /// 11: Negate the bit mask only for bits with an index less than or equal
1771 /// to the size of \a A or \a B. \n
1772 /// Bit [6]: Determines whether the index of the lowest set bit or the
1773 /// highest set bit is returned. \n
1774 /// 0: The index of the least significant set bit. \n
1775 /// 1: The index of the most significant set bit. \n
1776 /// \returns Returns an integer representing the result index of the comparison.
1777 #define _mm_cmpestri(A, LA, B, LB, M) \
1778  ((int)__builtin_ia32_pcmpestri128((__v16qi)(__m128i)(A), (int)(LA), \
1779  (__v16qi)(__m128i)(B), (int)(LB), \
1780  (int)(M)))
1781 
1782 /* SSE4.2 Packed Comparison Intrinsics and EFlag Reading. */
1783 /// Uses the immediate operand \a M to perform a comparison of string
1784 /// data with implicitly defined lengths that is contained in source operands
1785 /// \a A and \a B. Returns 1 if the bit mask is zero and the length of the
1786 /// string in \a B is the maximum, otherwise, returns 0.
1787 ///
1788 /// \headerfile <x86intrin.h>
1789 ///
1790 /// \code
1791 /// int _mm_cmpistra(__m128i A, __m128i B, const int M);
1792 /// \endcode
1793 ///
1794 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1795 /// instruction.
1796 ///
1797 /// \param A
1798 /// A 128-bit integer vector containing one of the source operands to be
1799 /// compared.
1800 /// \param B
1801 /// A 128-bit integer vector containing one of the source operands to be
1802 /// compared.
1803 /// \param M
1804 /// An 8-bit immediate operand specifying whether the characters are bytes or
1805 /// words and the type of comparison to perform. \n
1806 /// Bits [1:0]: Determine source data format. \n
1807 /// 00: 16 unsigned bytes \n
1808 /// 01: 8 unsigned words \n
1809 /// 10: 16 signed bytes \n
1810 /// 11: 8 signed words \n
1811 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1812 /// 00: Subset: Each character in \a B is compared for equality with all
1813 /// the characters in \a A. \n
1814 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1815 /// basis is greater than or equal for even-indexed elements in \a A,
1816 /// and less than or equal for odd-indexed elements in \a A. \n
1817 /// 10: Match: Compare each pair of corresponding characters in \a A and
1818 /// \a B for equality. \n
1819 /// 11: Substring: Search \a B for substring matches of \a A. \n
1820 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1821 /// mask of the comparison results. \n
1822 /// 00: No effect. \n
1823 /// 01: Negate the bit mask. \n
1824 /// 10: No effect. \n
1825 /// 11: Negate the bit mask only for bits with an index less than or equal
1826 /// to the size of \a A or \a B. \n
1827 /// \returns Returns 1 if the bit mask is zero and the length of the string in
1828 /// \a B is the maximum; otherwise, returns 0.
1829 #define _mm_cmpistra(A, B, M) \
1830  ((int)__builtin_ia32_pcmpistria128((__v16qi)(__m128i)(A), \
1831  (__v16qi)(__m128i)(B), (int)(M)))
1832 
1833 /// Uses the immediate operand \a M to perform a comparison of string
1834 /// data with implicitly defined lengths that is contained in source operands
1835 /// \a A and \a B. Returns 1 if the bit mask is non-zero, otherwise, returns
1836 /// 0.
1837 ///
1838 /// \headerfile <x86intrin.h>
1839 ///
1840 /// \code
1841 /// int _mm_cmpistrc(__m128i A, __m128i B, const int M);
1842 /// \endcode
1843 ///
1844 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1845 /// instruction.
1846 ///
1847 /// \param A
1848 /// A 128-bit integer vector containing one of the source operands to be
1849 /// compared.
1850 /// \param B
1851 /// A 128-bit integer vector containing one of the source operands to be
1852 /// compared.
1853 /// \param M
1854 /// An 8-bit immediate operand specifying whether the characters are bytes or
1855 /// words and the type of comparison to perform. \n
1856 /// Bits [1:0]: Determine source data format. \n
1857 /// 00: 16 unsigned bytes \n
1858 /// 01: 8 unsigned words \n
1859 /// 10: 16 signed bytes \n
1860 /// 11: 8 signed words \n
1861 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1862 /// 00: Subset: Each character in \a B is compared for equality with all
1863 /// the characters in \a A. \n
1864 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1865 /// basis is greater than or equal for even-indexed elements in \a A,
1866 /// and less than or equal for odd-indexed elements in \a A. \n
1867 /// 10: Match: Compare each pair of corresponding characters in \a A and
1868 /// \a B for equality. \n
1869 /// 11: Substring: Search B for substring matches of \a A. \n
1870 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1871 /// mask of the comparison results. \n
1872 /// 00: No effect. \n
1873 /// 01: Negate the bit mask. \n
1874 /// 10: No effect. \n
1875 /// 11: Negate the bit mask only for bits with an index less than or equal
1876 /// to the size of \a A or \a B.
1877 /// \returns Returns 1 if the bit mask is non-zero, otherwise, returns 0.
1878 #define _mm_cmpistrc(A, B, M) \
1879  ((int)__builtin_ia32_pcmpistric128((__v16qi)(__m128i)(A), \
1880  (__v16qi)(__m128i)(B), (int)(M)))
1881 
1882 /// Uses the immediate operand \a M to perform a comparison of string
1883 /// data with implicitly defined lengths that is contained in source operands
1884 /// \a A and \a B. Returns bit 0 of the resulting bit mask.
1885 ///
1886 /// \headerfile <x86intrin.h>
1887 ///
1888 /// \code
1889 /// int _mm_cmpistro(__m128i A, __m128i B, const int M);
1890 /// \endcode
1891 ///
1892 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1893 /// instruction.
1894 ///
1895 /// \param A
1896 /// A 128-bit integer vector containing one of the source operands to be
1897 /// compared.
1898 /// \param B
1899 /// A 128-bit integer vector containing one of the source operands to be
1900 /// compared.
1901 /// \param M
1902 /// An 8-bit immediate operand specifying whether the characters are bytes or
1903 /// words and the type of comparison to perform. \n
1904 /// Bits [1:0]: Determine source data format. \n
1905 /// 00: 16 unsigned bytes \n
1906 /// 01: 8 unsigned words \n
1907 /// 10: 16 signed bytes \n
1908 /// 11: 8 signed words \n
1909 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1910 /// 00: Subset: Each character in \a B is compared for equality with all
1911 /// the characters in \a A. \n
1912 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1913 /// basis is greater than or equal for even-indexed elements in \a A,
1914 /// and less than or equal for odd-indexed elements in \a A. \n
1915 /// 10: Match: Compare each pair of corresponding characters in \a A and
1916 /// \a B for equality. \n
1917 /// 11: Substring: Search B for substring matches of \a A. \n
1918 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1919 /// mask of the comparison results. \n
1920 /// 00: No effect. \n
1921 /// 01: Negate the bit mask. \n
1922 /// 10: No effect. \n
1923 /// 11: Negate the bit mask only for bits with an index less than or equal
1924 /// to the size of \a A or \a B. \n
1925 /// \returns Returns bit 0 of the resulting bit mask.
1926 #define _mm_cmpistro(A, B, M) \
1927  ((int)__builtin_ia32_pcmpistrio128((__v16qi)(__m128i)(A), \
1928  (__v16qi)(__m128i)(B), (int)(M)))
1929 
1930 /// Uses the immediate operand \a M to perform a comparison of string
1931 /// data with implicitly defined lengths that is contained in source operands
1932 /// \a A and \a B. Returns 1 if the length of the string in \a A is less than
1933 /// the maximum, otherwise, returns 0.
1934 ///
1935 /// \headerfile <x86intrin.h>
1936 ///
1937 /// \code
1938 /// int _mm_cmpistrs(__m128i A, __m128i B, const int M);
1939 /// \endcode
1940 ///
1941 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1942 /// instruction.
1943 ///
1944 /// \param A
1945 /// A 128-bit integer vector containing one of the source operands to be
1946 /// compared.
1947 /// \param B
1948 /// A 128-bit integer vector containing one of the source operands to be
1949 /// compared.
1950 /// \param M
1951 /// An 8-bit immediate operand specifying whether the characters are bytes or
1952 /// words and the type of comparison to perform. \n
1953 /// Bits [1:0]: Determine source data format. \n
1954 /// 00: 16 unsigned bytes \n
1955 /// 01: 8 unsigned words \n
1956 /// 10: 16 signed bytes \n
1957 /// 11: 8 signed words \n
1958 /// Bits [3:2]: Determine comparison type and aggregation method. \n
1959 /// 00: Subset: Each character in \a B is compared for equality with all
1960 /// the characters in \a A. \n
1961 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
1962 /// basis is greater than or equal for even-indexed elements in \a A,
1963 /// and less than or equal for odd-indexed elements in \a A. \n
1964 /// 10: Match: Compare each pair of corresponding characters in \a A and
1965 /// \a B for equality. \n
1966 /// 11: Substring: Search \a B for substring matches of \a A. \n
1967 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
1968 /// mask of the comparison results. \n
1969 /// 00: No effect. \n
1970 /// 01: Negate the bit mask. \n
1971 /// 10: No effect. \n
1972 /// 11: Negate the bit mask only for bits with an index less than or equal
1973 /// to the size of \a A or \a B. \n
1974 /// \returns Returns 1 if the length of the string in \a A is less than the
1975 /// maximum, otherwise, returns 0.
1976 #define _mm_cmpistrs(A, B, M) \
1977  ((int)__builtin_ia32_pcmpistris128((__v16qi)(__m128i)(A), \
1978  (__v16qi)(__m128i)(B), (int)(M)))
1979 
1980 /// Uses the immediate operand \a M to perform a comparison of string
1981 /// data with implicitly defined lengths that is contained in source operands
1982 /// \a A and \a B. Returns 1 if the length of the string in \a B is less than
1983 /// the maximum, otherwise, returns 0.
1984 ///
1985 /// \headerfile <x86intrin.h>
1986 ///
1987 /// \code
1988 /// int _mm_cmpistrz(__m128i A, __m128i B, const int M);
1989 /// \endcode
1990 ///
1991 /// This intrinsic corresponds to the <c> VPCMPISTRI / PCMPISTRI </c>
1992 /// instruction.
1993 ///
1994 /// \param A
1995 /// A 128-bit integer vector containing one of the source operands to be
1996 /// compared.
1997 /// \param B
1998 /// A 128-bit integer vector containing one of the source operands to be
1999 /// compared.
2000 /// \param M
2001 /// An 8-bit immediate operand specifying whether the characters are bytes or
2002 /// words and the type of comparison to perform. \n
2003 /// Bits [1:0]: Determine source data format. \n
2004 /// 00: 16 unsigned bytes \n
2005 /// 01: 8 unsigned words \n
2006 /// 10: 16 signed bytes \n
2007 /// 11: 8 signed words \n
2008 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2009 /// 00: Subset: Each character in \a B is compared for equality with all
2010 /// the characters in \a A. \n
2011 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2012 /// basis is greater than or equal for even-indexed elements in \a A,
2013 /// and less than or equal for odd-indexed elements in \a A. \n
2014 /// 10: Match: Compare each pair of corresponding characters in \a A and
2015 /// \a B for equality. \n
2016 /// 11: Substring: Search \a B for substring matches of \a A. \n
2017 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
2018 /// mask of the comparison results. \n
2019 /// 00: No effect. \n
2020 /// 01: Negate the bit mask. \n
2021 /// 10: No effect. \n
2022 /// 11: Negate the bit mask only for bits with an index less than or equal
2023 /// to the size of \a A or \a B.
2024 /// \returns Returns 1 if the length of the string in \a B is less than the
2025 /// maximum, otherwise, returns 0.
2026 #define _mm_cmpistrz(A, B, M) \
2027  ((int)__builtin_ia32_pcmpistriz128((__v16qi)(__m128i)(A), \
2028  (__v16qi)(__m128i)(B), (int)(M)))
2029 
2030 /// Uses the immediate operand \a M to perform a comparison of string
2031 /// data with explicitly defined lengths that is contained in source operands
2032 /// \a A and \a B. Returns 1 if the bit mask is zero and the length of the
2033 /// string in \a B is the maximum, otherwise, returns 0.
2034 ///
2035 /// \headerfile <x86intrin.h>
2036 ///
2037 /// \code
2038 /// int _mm_cmpestra(__m128i A, int LA, __m128i B, int LB, const int M);
2039 /// \endcode
2040 ///
2041 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2042 /// instruction.
2043 ///
2044 /// \param A
2045 /// A 128-bit integer vector containing one of the source operands to be
2046 /// compared.
2047 /// \param LA
2048 /// An integer that specifies the length of the string in \a A.
2049 /// \param B
2050 /// A 128-bit integer vector containing one of the source operands to be
2051 /// compared.
2052 /// \param LB
2053 /// An integer that specifies the length of the string in \a B.
2054 /// \param M
2055 /// An 8-bit immediate operand specifying whether the characters are bytes or
2056 /// words and the type of comparison to perform. \n
2057 /// Bits [1:0]: Determine source data format. \n
2058 /// 00: 16 unsigned bytes \n
2059 /// 01: 8 unsigned words \n
2060 /// 10: 16 signed bytes \n
2061 /// 11: 8 signed words \n
2062 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2063 /// 00: Subset: Each character in \a B is compared for equality with all
2064 /// the characters in \a A. \n
2065 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2066 /// basis is greater than or equal for even-indexed elements in \a A,
2067 /// and less than or equal for odd-indexed elements in \a A. \n
2068 /// 10: Match: Compare each pair of corresponding characters in \a A and
2069 /// \a B for equality. \n
2070 /// 11: Substring: Search \a B for substring matches of \a A. \n
2071 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
2072 /// mask of the comparison results. \n
2073 /// 00: No effect. \n
2074 /// 01: Negate the bit mask. \n
2075 /// 10: No effect. \n
2076 /// 11: Negate the bit mask only for bits with an index less than or equal
2077 /// to the size of \a A or \a B.
2078 /// \returns Returns 1 if the bit mask is zero and the length of the string in
2079 /// \a B is the maximum, otherwise, returns 0.
2080 #define _mm_cmpestra(A, LA, B, LB, M) \
2081  ((int)__builtin_ia32_pcmpestria128((__v16qi)(__m128i)(A), (int)(LA), \
2082  (__v16qi)(__m128i)(B), (int)(LB), \
2083  (int)(M)))
2084 
2085 /// Uses the immediate operand \a M to perform a comparison of string
2086 /// data with explicitly defined lengths that is contained in source operands
2087 /// \a A and \a B. Returns 1 if the resulting mask is non-zero, otherwise,
2088 /// returns 0.
2089 ///
2090 /// \headerfile <x86intrin.h>
2091 ///
2092 /// \code
2093 /// int _mm_cmpestrc(__m128i A, int LA, __m128i B, int LB, const int M);
2094 /// \endcode
2095 ///
2096 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2097 /// instruction.
2098 ///
2099 /// \param A
2100 /// A 128-bit integer vector containing one of the source operands to be
2101 /// compared.
2102 /// \param LA
2103 /// An integer that specifies the length of the string in \a A.
2104 /// \param B
2105 /// A 128-bit integer vector containing one of the source operands to be
2106 /// compared.
2107 /// \param LB
2108 /// An integer that specifies the length of the string in \a B.
2109 /// \param M
2110 /// An 8-bit immediate operand specifying whether the characters are bytes or
2111 /// words and the type of comparison to perform. \n
2112 /// Bits [1:0]: Determine source data format. \n
2113 /// 00: 16 unsigned bytes \n
2114 /// 01: 8 unsigned words \n
2115 /// 10: 16 signed bytes \n
2116 /// 11: 8 signed words \n
2117 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2118 /// 00: Subset: Each character in \a B is compared for equality with all
2119 /// the characters in \a A. \n
2120 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2121 /// basis is greater than or equal for even-indexed elements in \a A,
2122 /// and less than or equal for odd-indexed elements in \a A. \n
2123 /// 10: Match: Compare each pair of corresponding characters in \a A and
2124 /// \a B for equality. \n
2125 /// 11: Substring: Search \a B for substring matches of \a A. \n
2126 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
2127 /// mask of the comparison results. \n
2128 /// 00: No effect. \n
2129 /// 01: Negate the bit mask. \n
2130 /// 10: No effect. \n
2131 /// 11: Negate the bit mask only for bits with an index less than or equal
2132 /// to the size of \a A or \a B. \n
2133 /// \returns Returns 1 if the resulting mask is non-zero, otherwise, returns 0.
2134 #define _mm_cmpestrc(A, LA, B, LB, M) \
2135  ((int)__builtin_ia32_pcmpestric128((__v16qi)(__m128i)(A), (int)(LA), \
2136  (__v16qi)(__m128i)(B), (int)(LB), \
2137  (int)(M)))
2138 
2139 /// Uses the immediate operand \a M to perform a comparison of string
2140 /// data with explicitly defined lengths that is contained in source operands
2141 /// \a A and \a B. Returns bit 0 of the resulting bit mask.
2142 ///
2143 /// \headerfile <x86intrin.h>
2144 ///
2145 /// \code
2146 /// int _mm_cmpestro(__m128i A, int LA, __m128i B, int LB, const int M);
2147 /// \endcode
2148 ///
2149 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2150 /// instruction.
2151 ///
2152 /// \param A
2153 /// A 128-bit integer vector containing one of the source operands to be
2154 /// compared.
2155 /// \param LA
2156 /// An integer that specifies the length of the string in \a A.
2157 /// \param B
2158 /// A 128-bit integer vector containing one of the source operands to be
2159 /// compared.
2160 /// \param LB
2161 /// An integer that specifies the length of the string in \a B.
2162 /// \param M
2163 /// An 8-bit immediate operand specifying whether the characters are bytes or
2164 /// words and the type of comparison to perform. \n
2165 /// Bits [1:0]: Determine source data format. \n
2166 /// 00: 16 unsigned bytes \n
2167 /// 01: 8 unsigned words \n
2168 /// 10: 16 signed bytes \n
2169 /// 11: 8 signed words \n
2170 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2171 /// 00: Subset: Each character in \a B is compared for equality with all
2172 /// the characters in \a A. \n
2173 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2174 /// basis is greater than or equal for even-indexed elements in \a A,
2175 /// and less than or equal for odd-indexed elements in \a A. \n
2176 /// 10: Match: Compare each pair of corresponding characters in \a A and
2177 /// \a B for equality. \n
2178 /// 11: Substring: Search \a B for substring matches of \a A. \n
2179 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
2180 /// mask of the comparison results. \n
2181 /// 00: No effect. \n
2182 /// 01: Negate the bit mask. \n
2183 /// 10: No effect. \n
2184 /// 11: Negate the bit mask only for bits with an index less than or equal
2185 /// to the size of \a A or \a B.
2186 /// \returns Returns bit 0 of the resulting bit mask.
2187 #define _mm_cmpestro(A, LA, B, LB, M) \
2188  ((int)__builtin_ia32_pcmpestrio128((__v16qi)(__m128i)(A), (int)(LA), \
2189  (__v16qi)(__m128i)(B), (int)(LB), \
2190  (int)(M)))
2191 
2192 /// Uses the immediate operand \a M to perform a comparison of string
2193 /// data with explicitly defined lengths that is contained in source operands
2194 /// \a A and \a B. Returns 1 if the length of the string in \a A is less than
2195 /// the maximum, otherwise, returns 0.
2196 ///
2197 /// \headerfile <x86intrin.h>
2198 ///
2199 /// \code
2200 /// int _mm_cmpestrs(__m128i A, int LA, __m128i B, int LB, const int M);
2201 /// \endcode
2202 ///
2203 /// This intrinsic corresponds to the <c> VPCMPESTRI / PCMPESTRI </c>
2204 /// instruction.
2205 ///
2206 /// \param A
2207 /// A 128-bit integer vector containing one of the source operands to be
2208 /// compared.
2209 /// \param LA
2210 /// An integer that specifies the length of the string in \a A.
2211 /// \param B
2212 /// A 128-bit integer vector containing one of the source operands to be
2213 /// compared.
2214 /// \param LB
2215 /// An integer that specifies the length of the string in \a B.
2216 /// \param M
2217 /// An 8-bit immediate operand specifying whether the characters are bytes or
2218 /// words and the type of comparison to perform. \n
2219 /// Bits [1:0]: Determine source data format. \n
2220 /// 00: 16 unsigned bytes \n
2221 /// 01: 8 unsigned words \n
2222 /// 10: 16 signed bytes \n
2223 /// 11: 8 signed words \n
2224 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2225 /// 00: Subset: Each character in \a B is compared for equality with all
2226 /// the characters in \a A. \n
2227 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2228 /// basis is greater than or equal for even-indexed elements in \a A,
2229 /// and less than or equal for odd-indexed elements in \a A. \n
2230 /// 10: Match: Compare each pair of corresponding characters in \a A and
2231 /// \a B for equality. \n
2232 /// 11: Substring: Search \a B for substring matches of \a A. \n
2233 /// Bits [5:4]: Determine whether to perform a one's complement in the bit
2234 /// mask of the comparison results. \n
2235 /// 00: No effect. \n
2236 /// 01: Negate the bit mask. \n
2237 /// 10: No effect. \n
2238 /// 11: Negate the bit mask only for bits with an index less than or equal
2239 /// to the size of \a A or \a B. \n
2240 /// \returns Returns 1 if the length of the string in \a A is less than the
2241 /// maximum, otherwise, returns 0.
2242 #define _mm_cmpestrs(A, LA, B, LB, M) \
2243  ((int)__builtin_ia32_pcmpestris128((__v16qi)(__m128i)(A), (int)(LA), \
2244  (__v16qi)(__m128i)(B), (int)(LB), \
2245  (int)(M)))
2246 
2247 /// Uses the immediate operand \a M to perform a comparison of string
2248 /// data with explicitly defined lengths that is contained in source operands
2249 /// \a A and \a B. Returns 1 if the length of the string in \a B is less than
2250 /// the maximum, otherwise, returns 0.
2251 ///
2252 /// \headerfile <x86intrin.h>
2253 ///
2254 /// \code
2255 /// int _mm_cmpestrz(__m128i A, int LA, __m128i B, int LB, const int M);
2256 /// \endcode
2257 ///
2258 /// This intrinsic corresponds to the <c> VPCMPESTRI </c> instruction.
2259 ///
2260 /// \param A
2261 /// A 128-bit integer vector containing one of the source operands to be
2262 /// compared.
2263 /// \param LA
2264 /// An integer that specifies the length of the string in \a A.
2265 /// \param B
2266 /// A 128-bit integer vector containing one of the source operands to be
2267 /// compared.
2268 /// \param LB
2269 /// An integer that specifies the length of the string in \a B.
2270 /// \param M
2271 /// An 8-bit immediate operand specifying whether the characters are bytes or
2272 /// words and the type of comparison to perform. \n
2273 /// Bits [1:0]: Determine source data format. \n
2274 /// 00: 16 unsigned bytes \n
2275 /// 01: 8 unsigned words \n
2276 /// 10: 16 signed bytes \n
2277 /// 11: 8 signed words \n
2278 /// Bits [3:2]: Determine comparison type and aggregation method. \n
2279 /// 00: Subset: Each character in \a B is compared for equality with all
2280 /// the characters in \a A. \n
2281 /// 01: Ranges: Each character in \a B is compared to \a A. The comparison
2282 /// basis is greater than or equal for even-indexed elements in \a A,
2283 /// and less than or equal for odd-indexed elements in \a A. \n
2284 /// 10: Match: Compare each pair of corresponding characters in \a A and
2285 /// \a B for equality. \n
2286 /// 11: Substring: Search \a B for substring matches of \a A. \n
2287 /// Bits [5:4]: Determine whether to perform a one's complement on the bit
2288 /// mask of the comparison results. \n
2289 /// 00: No effect. \n
2290 /// 01: Negate the bit mask. \n
2291 /// 10: No effect. \n
2292 /// 11: Negate the bit mask only for bits with an index less than or equal
2293 /// to the size of \a A or \a B.
2294 /// \returns Returns 1 if the length of the string in \a B is less than the
2295 /// maximum, otherwise, returns 0.
2296 #define _mm_cmpestrz(A, LA, B, LB, M) \
2297  ((int)__builtin_ia32_pcmpestriz128((__v16qi)(__m128i)(A), (int)(LA), \
2298  (__v16qi)(__m128i)(B), (int)(LB), \
2299  (int)(M)))
2300 
2301 /* SSE4.2 Compare Packed Data -- Greater Than. */
2302 /// Compares each of the corresponding 64-bit values of the 128-bit
2303 /// integer vectors to determine if the values in the first operand are
2304 /// greater than those in the second operand.
2305 ///
2306 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
2307 ///
2308 /// \headerfile <x86intrin.h>
2309 ///
2310 /// This intrinsic corresponds to the <c> VPCMPGTQ / PCMPGTQ </c> instruction.
2311 ///
2312 /// \param __V1
2313 /// A 128-bit integer vector.
2314 /// \param __V2
2315 /// A 128-bit integer vector.
2316 /// \returns A 128-bit integer vector containing the comparison results.
2317 static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpgt_epi64(__m128i __V1,
2318  __m128i __V2) {
2319  return (__m128i)((__v2di)__V1 > (__v2di)__V2);
2320 }
2321 
2322 #undef __DEFAULT_FN_ATTRS
2323 
2324 #include <popcntintrin.h>
2325 
2326 #include <crc32intrin.h>
2327 
2328 #endif /* __SMMINTRIN_H */
static __inline__ __m128d __DEFAULT_FN_ATTRS _mm_blendv_pd(__m128d __V1, __m128d __V2, __m128d __M)
Returns a 128-bit vector of [2 x double] where the values are selected from either the first or secon...
Definition: smmintrin.h:436
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epu16(__m128i __V1, __m128i __V2)
Compares the corresponding elements of two 128-bit vectors of [8 x u16] and returns a 128-bit vector ...
Definition: smmintrin.h:702
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi32(__m128i __V)
Zero-extends each of the lower four 8-bit integer elements of a 128-bit vector of [16 x i8] to 32-bit...
Definition: smmintrin.h:1358
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi16(__m128i __V)
Zero-extends each of the lower eight 8-bit integer elements of a 128-bit vector of [16 x i8] to 16-bi...
Definition: smmintrin.h:1338
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mullo_epi32(__m128i __V1, __m128i __V2)
Multiples corresponding elements of two 128-bit vectors of [4 x i32] and returns the lower 32 bits of...
Definition: smmintrin.h:539
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_stream_load_si128(const void *__V)
Loads integer values from a 128-bit aligned memory location to a 128-bit integer vector.
Definition: smmintrin.h:648
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epi8(__m128i __V1, __m128i __V2)
Compares the corresponding elements of two 128-bit vectors of [16 x i8] and returns a 128-bit vector ...
Definition: smmintrin.h:666
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epu32(__m128i __V1, __m128i __V2)
Compares the corresponding elements of two 128-bit vectors of [4 x u32] and returns a 128-bit vector ...
Definition: smmintrin.h:792
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi32(__m128i __V)
Sign-extends each of the lower four 8-bit integer elements of a 128-bit vector of [16 x i8] to 32-bit...
Definition: smmintrin.h:1243
#define __DEFAULT_FN_ATTRS
Definition: smmintrin.h:1522
static __inline__ __m128 __DEFAULT_FN_ATTRS _mm_blendv_ps(__m128 __V1, __m128 __V2, __m128 __M)
Returns a 128-bit vector of [4 x float] where the values are selected from either the first or second...
Definition: smmintrin.h:463
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu32_epi64(__m128i __V)
Zero-extends each of the lower two 32-bit integer elements of a 128-bit integer vector of [4 x i32] t...
Definition: smmintrin.h:1430
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu16_epi64(__m128i __V)
Zero-extends each of the lower two 16-bit integer elements of a 128-bit integer vector of [8 x i16] t...
Definition: smmintrin.h:1412
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpgt_epi64(__m128i __V1, __m128i __V2)
Compares each of the corresponding 64-bit values of the 128-bit integer vectors to determine if the v...
Definition: smmintrin.h:2317
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_packus_epi32(__m128i __V1, __m128i __V2)
Converts, with saturation, 32-bit signed integers from both 128-bit integer vector operands into 16-b...
Definition: smmintrin.h:1454
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epi32(__m128i __V1, __m128i __V2)
Compares the corresponding elements of two 128-bit vectors of [4 x i32] and returns a 128-bit vector ...
Definition: smmintrin.h:738
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi16_epi64(__m128i __V)
Sign-extends each of the lower two 16-bit integer elements of a 128-bit integer vector of [8 x i16] t...
Definition: smmintrin.h:1301
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi64(__m128i __V)
Sign-extends each of the lower two 8-bit integer elements of a 128-bit integer vector of [16 x i8] to...
Definition: smmintrin.h:1263
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epi8(__m128i __V1, __m128i __V2)
Compares the corresponding elements of two 128-bit vectors of [16 x i8] and returns a 128-bit vector ...
Definition: smmintrin.h:684
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epu16(__m128i __V1, __m128i __V2)
Compares the corresponding elements of two 128-bit vectors of [8 x u16] and returns a 128-bit vector ...
Definition: smmintrin.h:720
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cmpeq_epi64(__m128i __V1, __m128i __V2)
Compares each of the corresponding 64-bit values of the 128-bit integer vectors for equality.
Definition: smmintrin.h:1202
static __inline__ int __DEFAULT_FN_ATTRS _mm_testnzc_si128(__m128i __M, __m128i __V)
Tests whether the specified bits in a 128-bit integer vector are neither all zeros nor all ones.
Definition: smmintrin.h:1128
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi16_epi32(__m128i __V)
Sign-extends each of the lower four 16-bit integer elements of a 128-bit integer vector of [8 x i16] ...
Definition: smmintrin.h:1283
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu16_epi32(__m128i __V)
Zero-extends each of the lower four 16-bit integer elements of a 128-bit integer vector of [8 x i16] ...
Definition: smmintrin.h:1394
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_max_epi32(__m128i __V1, __m128i __V2)
Compares the corresponding elements of two 128-bit vectors of [4 x i32] and returns a 128-bit vector ...
Definition: smmintrin.h:756
static __inline__ int __DEFAULT_FN_ATTRS _mm_testc_si128(__m128i __M, __m128i __V)
Tests whether the specified bits in a 128-bit integer vector are all ones.
Definition: smmintrin.h:1110
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepu8_epi64(__m128i __V)
Zero-extends each of the lower two 8-bit integer elements of a 128-bit integer vector of [16 x i8] to...
Definition: smmintrin.h:1376
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_min_epu32(__m128i __V1, __m128i __V2)
Compares the corresponding elements of two 128-bit vectors of [4 x u32] and returns a 128-bit vector ...
Definition: smmintrin.h:774
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi8_epi16(__m128i __V)
Sign-extends each of the lower eight 8-bit integer elements of a 128-bit vector of [16 x i8] to 16-bi...
Definition: smmintrin.h:1221
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_mul_epi32(__m128i __V1, __m128i __V2)
Multiplies corresponding even-indexed elements of two 128-bit vectors of [4 x i32] and returns a 128-...
Definition: smmintrin.h:558
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_minpos_epu16(__m128i __V)
Finds the minimum unsigned 16-bit element in the input 128-bit vector of [8 x u16] and returns it and...
Definition: smmintrin.h:1512
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_cvtepi32_epi64(__m128i __V)
Sign-extends each of the lower two 32-bit integer elements of a 128-bit integer vector of [4 x i32] t...
Definition: smmintrin.h:1319
static __inline__ int __DEFAULT_FN_ATTRS _mm_testz_si128(__m128i __M, __m128i __V)
Tests whether the specified bits in a 128-bit integer vector are all zeros.
Definition: smmintrin.h:1093
static __inline__ __m128i __DEFAULT_FN_ATTRS _mm_blendv_epi8(__m128i __V1, __m128i __V2, __m128i __M)
Returns a 128-bit vector of [16 x i8] where the values are selected from either of the first or secon...
Definition: smmintrin.h:490