clang  20.0.0git
__clang_cuda_intrinsics.h
Go to the documentation of this file.
1 /*===--- __clang_cuda_intrinsics.h - Device-side CUDA intrinsic wrappers ---===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 #ifndef __CLANG_CUDA_INTRINSICS_H__
10 #define __CLANG_CUDA_INTRINSICS_H__
11 #ifndef __CUDA__
12 #error "This file is for CUDA compilation only."
13 #endif
14 
15 // sm_30 intrinsics: __shfl_{up,down,xor}.
16 
17 #define __SM_30_INTRINSICS_H__
18 #define __SM_30_INTRINSICS_HPP__
19 
20 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
21 
22 #pragma push_macro("__MAKE_SHUFFLES")
23 #define __MAKE_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, __Mask, \
24  __Type) \
25  inline __device__ int __FnName(int __val, __Type __offset, \
26  int __width = warpSize) { \
27  return __IntIntrinsic(__val, __offset, \
28  ((warpSize - __width) << 8) | (__Mask)); \
29  } \
30  inline __device__ float __FnName(float __val, __Type __offset, \
31  int __width = warpSize) { \
32  return __FloatIntrinsic(__val, __offset, \
33  ((warpSize - __width) << 8) | (__Mask)); \
34  } \
35  inline __device__ unsigned int __FnName(unsigned int __val, __Type __offset, \
36  int __width = warpSize) { \
37  return static_cast<unsigned int>( \
38  ::__FnName(static_cast<int>(__val), __offset, __width)); \
39  } \
40  inline __device__ long long __FnName(long long __val, __Type __offset, \
41  int __width = warpSize) { \
42  struct __Bits { \
43  int __a, __b; \
44  }; \
45  _Static_assert(sizeof(__val) == sizeof(__Bits)); \
46  _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \
47  __Bits __tmp; \
48  memcpy(&__tmp, &__val, sizeof(__val)); \
49  __tmp.__a = ::__FnName(__tmp.__a, __offset, __width); \
50  __tmp.__b = ::__FnName(__tmp.__b, __offset, __width); \
51  long long __ret; \
52  memcpy(&__ret, &__tmp, sizeof(__tmp)); \
53  return __ret; \
54  } \
55  inline __device__ long __FnName(long __val, __Type __offset, \
56  int __width = warpSize) { \
57  _Static_assert(sizeof(long) == sizeof(long long) || \
58  sizeof(long) == sizeof(int)); \
59  if (sizeof(long) == sizeof(long long)) { \
60  return static_cast<long>( \
61  ::__FnName(static_cast<long long>(__val), __offset, __width)); \
62  } else if (sizeof(long) == sizeof(int)) { \
63  return static_cast<long>( \
64  ::__FnName(static_cast<int>(__val), __offset, __width)); \
65  } \
66  } \
67  inline __device__ unsigned long __FnName( \
68  unsigned long __val, __Type __offset, int __width = warpSize) { \
69  return static_cast<unsigned long>( \
70  ::__FnName(static_cast<long>(__val), __offset, __width)); \
71  } \
72  inline __device__ unsigned long long __FnName( \
73  unsigned long long __val, __Type __offset, int __width = warpSize) { \
74  return static_cast<unsigned long long>( \
75  ::__FnName(static_cast<long long>(__val), __offset, __width)); \
76  } \
77  inline __device__ double __FnName(double __val, __Type __offset, \
78  int __width = warpSize) { \
79  long long __tmp; \
80  _Static_assert(sizeof(__tmp) == sizeof(__val)); \
81  memcpy(&__tmp, &__val, sizeof(__val)); \
82  __tmp = ::__FnName(__tmp, __offset, __width); \
83  double __ret; \
84  memcpy(&__ret, &__tmp, sizeof(__ret)); \
85  return __ret; \
86  }
87 
88 __MAKE_SHUFFLES(__shfl, __nvvm_shfl_idx_i32, __nvvm_shfl_idx_f32, 0x1f, int);
89 // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >=
90 // maxLane.
91 __MAKE_SHUFFLES(__shfl_up, __nvvm_shfl_up_i32, __nvvm_shfl_up_f32, 0,
92  unsigned int);
93 __MAKE_SHUFFLES(__shfl_down, __nvvm_shfl_down_i32, __nvvm_shfl_down_f32, 0x1f,
94  unsigned int);
95 __MAKE_SHUFFLES(__shfl_xor, __nvvm_shfl_bfly_i32, __nvvm_shfl_bfly_f32, 0x1f,
96  int);
97 #pragma pop_macro("__MAKE_SHUFFLES")
98 
99 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
100 
101 #if CUDA_VERSION >= 9000
102 #if (!defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300)
103 // __shfl_sync_* variants available in CUDA-9
104 #pragma push_macro("__MAKE_SYNC_SHUFFLES")
105 #define __MAKE_SYNC_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, \
106  __Mask, __Type) \
107  inline __device__ int __FnName(unsigned int __mask, int __val, \
108  __Type __offset, int __width = warpSize) { \
109  return __IntIntrinsic(__mask, __val, __offset, \
110  ((warpSize - __width) << 8) | (__Mask)); \
111  } \
112  inline __device__ float __FnName(unsigned int __mask, float __val, \
113  __Type __offset, int __width = warpSize) { \
114  return __FloatIntrinsic(__mask, __val, __offset, \
115  ((warpSize - __width) << 8) | (__Mask)); \
116  } \
117  inline __device__ unsigned int __FnName(unsigned int __mask, \
118  unsigned int __val, __Type __offset, \
119  int __width = warpSize) { \
120  return static_cast<unsigned int>( \
121  ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \
122  } \
123  inline __device__ long long __FnName(unsigned int __mask, long long __val, \
124  __Type __offset, \
125  int __width = warpSize) { \
126  struct __Bits { \
127  int __a, __b; \
128  }; \
129  _Static_assert(sizeof(__val) == sizeof(__Bits)); \
130  _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \
131  __Bits __tmp; \
132  memcpy(&__tmp, &__val, sizeof(__val)); \
133  __tmp.__a = ::__FnName(__mask, __tmp.__a, __offset, __width); \
134  __tmp.__b = ::__FnName(__mask, __tmp.__b, __offset, __width); \
135  long long __ret; \
136  memcpy(&__ret, &__tmp, sizeof(__tmp)); \
137  return __ret; \
138  } \
139  inline __device__ unsigned long long __FnName( \
140  unsigned int __mask, unsigned long long __val, __Type __offset, \
141  int __width = warpSize) { \
142  return static_cast<unsigned long long>( \
143  ::__FnName(__mask, static_cast<long long>(__val), __offset, __width)); \
144  } \
145  inline __device__ long __FnName(unsigned int __mask, long __val, \
146  __Type __offset, int __width = warpSize) { \
147  _Static_assert(sizeof(long) == sizeof(long long) || \
148  sizeof(long) == sizeof(int)); \
149  if (sizeof(long) == sizeof(long long)) { \
150  return static_cast<long>(::__FnName( \
151  __mask, static_cast<long long>(__val), __offset, __width)); \
152  } else if (sizeof(long) == sizeof(int)) { \
153  return static_cast<long>( \
154  ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \
155  } \
156  } \
157  inline __device__ unsigned long __FnName( \
158  unsigned int __mask, unsigned long __val, __Type __offset, \
159  int __width = warpSize) { \
160  return static_cast<unsigned long>( \
161  ::__FnName(__mask, static_cast<long>(__val), __offset, __width)); \
162  } \
163  inline __device__ double __FnName(unsigned int __mask, double __val, \
164  __Type __offset, int __width = warpSize) { \
165  long long __tmp; \
166  _Static_assert(sizeof(__tmp) == sizeof(__val)); \
167  memcpy(&__tmp, &__val, sizeof(__val)); \
168  __tmp = ::__FnName(__mask, __tmp, __offset, __width); \
169  double __ret; \
170  memcpy(&__ret, &__tmp, sizeof(__ret)); \
171  return __ret; \
172  }
173 __MAKE_SYNC_SHUFFLES(__shfl_sync, __nvvm_shfl_sync_idx_i32,
174  __nvvm_shfl_sync_idx_f32, 0x1f, int);
175 // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >=
176 // maxLane.
177 __MAKE_SYNC_SHUFFLES(__shfl_up_sync, __nvvm_shfl_sync_up_i32,
178  __nvvm_shfl_sync_up_f32, 0, unsigned int);
179 __MAKE_SYNC_SHUFFLES(__shfl_down_sync, __nvvm_shfl_sync_down_i32,
180  __nvvm_shfl_sync_down_f32, 0x1f, unsigned int);
181 __MAKE_SYNC_SHUFFLES(__shfl_xor_sync, __nvvm_shfl_sync_bfly_i32,
182  __nvvm_shfl_sync_bfly_f32, 0x1f, int);
183 #pragma pop_macro("__MAKE_SYNC_SHUFFLES")
184 
185 inline __device__ void __syncwarp(unsigned int mask = 0xffffffff) {
186  return __nvvm_bar_warp_sync(mask);
187 }
188 
189 inline __device__ void __barrier_sync(unsigned int id) {
190  __nvvm_barrier_sync(id);
191 }
192 
193 inline __device__ void __barrier_sync_count(unsigned int id,
194  unsigned int count) {
195  __nvvm_barrier_sync_cnt(id, count);
196 }
197 
198 inline __device__ int __all_sync(unsigned int mask, int pred) {
199  return __nvvm_vote_all_sync(mask, pred);
200 }
201 
202 inline __device__ int __any_sync(unsigned int mask, int pred) {
203  return __nvvm_vote_any_sync(mask, pred);
204 }
205 
206 inline __device__ int __uni_sync(unsigned int mask, int pred) {
207  return __nvvm_vote_uni_sync(mask, pred);
208 }
209 
210 inline __device__ unsigned int __ballot_sync(unsigned int mask, int pred) {
211  return __nvvm_vote_ballot_sync(mask, pred);
212 }
213 
214 inline __device__ unsigned int __activemask() {
215 #if CUDA_VERSION < 9020
216  return __nvvm_vote_ballot(1);
217 #else
218  return __nvvm_activemask();
219 #endif
220 }
221 
222 inline __device__ unsigned int __fns(unsigned mask, unsigned base, int offset) {
223  return __nvvm_fns(mask, base, offset);
224 }
225 
226 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300
227 
228 // Define __match* builtins CUDA-9 headers expect to see.
229 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700
230 inline __device__ unsigned int __match32_any_sync(unsigned int mask,
231  unsigned int value) {
232  return __nvvm_match_any_sync_i32(mask, value);
233 }
234 
235 inline __device__ unsigned int
236 __match64_any_sync(unsigned int mask, unsigned long long value) {
237  return __nvvm_match_any_sync_i64(mask, value);
238 }
239 
240 inline __device__ unsigned int
241 __match32_all_sync(unsigned int mask, unsigned int value, int *pred) {
242  return __nvvm_match_all_sync_i32p(mask, value, pred);
243 }
244 
245 inline __device__ unsigned int
246 __match64_all_sync(unsigned int mask, unsigned long long value, int *pred) {
247  return __nvvm_match_all_sync_i64p(mask, value, pred);
248 }
249 #include "crt/sm_70_rt.hpp"
250 
251 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700
252 #endif // __CUDA_VERSION >= 9000
253 
254 // sm_32 intrinsics: __ldg and __funnelshift_{l,lc,r,rc}.
255 
256 // Prevent the vanilla sm_32 intrinsics header from being included.
257 #define __SM_32_INTRINSICS_H__
258 #define __SM_32_INTRINSICS_HPP__
259 
260 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
261 
262 inline __device__ char __ldg(const char *ptr) { return __nvvm_ldg_c(ptr); }
263 inline __device__ short __ldg(const short *ptr) { return __nvvm_ldg_s(ptr); }
264 inline __device__ int __ldg(const int *ptr) { return __nvvm_ldg_i(ptr); }
265 inline __device__ long __ldg(const long *ptr) { return __nvvm_ldg_l(ptr); }
266 inline __device__ long long __ldg(const long long *ptr) {
267  return __nvvm_ldg_ll(ptr);
268 }
269 inline __device__ unsigned char __ldg(const unsigned char *ptr) {
270  return __nvvm_ldg_uc(ptr);
271 }
272 inline __device__ signed char __ldg(const signed char *ptr) {
273  return __nvvm_ldg_uc((const unsigned char *)ptr);
274 }
275 inline __device__ unsigned short __ldg(const unsigned short *ptr) {
276  return __nvvm_ldg_us(ptr);
277 }
278 inline __device__ unsigned int __ldg(const unsigned int *ptr) {
279  return __nvvm_ldg_ui(ptr);
280 }
281 inline __device__ unsigned long __ldg(const unsigned long *ptr) {
282  return __nvvm_ldg_ul(ptr);
283 }
284 inline __device__ unsigned long long __ldg(const unsigned long long *ptr) {
285  return __nvvm_ldg_ull(ptr);
286 }
287 inline __device__ float __ldg(const float *ptr) { return __nvvm_ldg_f(ptr); }
288 inline __device__ double __ldg(const double *ptr) { return __nvvm_ldg_d(ptr); }
289 
290 inline __device__ char2 __ldg(const char2 *ptr) {
291  typedef char c2 __attribute__((ext_vector_type(2)));
292  // We can assume that ptr is aligned at least to char2's alignment, but the
293  // load will assume that ptr is aligned to char2's alignment. This is only
294  // safe if alignof(c2) <= alignof(char2).
295  c2 rv = __nvvm_ldg_c2(reinterpret_cast<const c2 *>(ptr));
296  char2 ret;
297  ret.x = rv[0];
298  ret.y = rv[1];
299  return ret;
300 }
301 inline __device__ char4 __ldg(const char4 *ptr) {
302  typedef char c4 __attribute__((ext_vector_type(4)));
303  c4 rv = __nvvm_ldg_c4(reinterpret_cast<const c4 *>(ptr));
304  char4 ret;
305  ret.x = rv[0];
306  ret.y = rv[1];
307  ret.z = rv[2];
308  ret.w = rv[3];
309  return ret;
310 }
311 inline __device__ short2 __ldg(const short2 *ptr) {
312  typedef short s2 __attribute__((ext_vector_type(2)));
313  s2 rv = __nvvm_ldg_s2(reinterpret_cast<const s2 *>(ptr));
314  short2 ret;
315  ret.x = rv[0];
316  ret.y = rv[1];
317  return ret;
318 }
319 inline __device__ short4 __ldg(const short4 *ptr) {
320  typedef short s4 __attribute__((ext_vector_type(4)));
321  s4 rv = __nvvm_ldg_s4(reinterpret_cast<const s4 *>(ptr));
322  short4 ret;
323  ret.x = rv[0];
324  ret.y = rv[1];
325  ret.z = rv[2];
326  ret.w = rv[3];
327  return ret;
328 }
329 inline __device__ int2 __ldg(const int2 *ptr) {
330  typedef int i2 __attribute__((ext_vector_type(2)));
331  i2 rv = __nvvm_ldg_i2(reinterpret_cast<const i2 *>(ptr));
332  int2 ret;
333  ret.x = rv[0];
334  ret.y = rv[1];
335  return ret;
336 }
337 inline __device__ int4 __ldg(const int4 *ptr) {
338  typedef int i4 __attribute__((ext_vector_type(4)));
339  i4 rv = __nvvm_ldg_i4(reinterpret_cast<const i4 *>(ptr));
340  int4 ret;
341  ret.x = rv[0];
342  ret.y = rv[1];
343  ret.z = rv[2];
344  ret.w = rv[3];
345  return ret;
346 }
347 inline __device__ longlong2 __ldg(const longlong2 *ptr) {
348  typedef long long ll2 __attribute__((ext_vector_type(2)));
349  ll2 rv = __nvvm_ldg_ll2(reinterpret_cast<const ll2 *>(ptr));
350  longlong2 ret;
351  ret.x = rv[0];
352  ret.y = rv[1];
353  return ret;
354 }
355 
356 inline __device__ uchar2 __ldg(const uchar2 *ptr) {
357  typedef unsigned char uc2 __attribute__((ext_vector_type(2)));
358  uc2 rv = __nvvm_ldg_uc2(reinterpret_cast<const uc2 *>(ptr));
359  uchar2 ret;
360  ret.x = rv[0];
361  ret.y = rv[1];
362  return ret;
363 }
364 inline __device__ uchar4 __ldg(const uchar4 *ptr) {
365  typedef unsigned char uc4 __attribute__((ext_vector_type(4)));
366  uc4 rv = __nvvm_ldg_uc4(reinterpret_cast<const uc4 *>(ptr));
367  uchar4 ret;
368  ret.x = rv[0];
369  ret.y = rv[1];
370  ret.z = rv[2];
371  ret.w = rv[3];
372  return ret;
373 }
374 inline __device__ ushort2 __ldg(const ushort2 *ptr) {
375  typedef unsigned short us2 __attribute__((ext_vector_type(2)));
376  us2 rv = __nvvm_ldg_us2(reinterpret_cast<const us2 *>(ptr));
377  ushort2 ret;
378  ret.x = rv[0];
379  ret.y = rv[1];
380  return ret;
381 }
382 inline __device__ ushort4 __ldg(const ushort4 *ptr) {
383  typedef unsigned short us4 __attribute__((ext_vector_type(4)));
384  us4 rv = __nvvm_ldg_us4(reinterpret_cast<const us4 *>(ptr));
385  ushort4 ret;
386  ret.x = rv[0];
387  ret.y = rv[1];
388  ret.z = rv[2];
389  ret.w = rv[3];
390  return ret;
391 }
392 inline __device__ uint2 __ldg(const uint2 *ptr) {
393  typedef unsigned int ui2 __attribute__((ext_vector_type(2)));
394  ui2 rv = __nvvm_ldg_ui2(reinterpret_cast<const ui2 *>(ptr));
395  uint2 ret;
396  ret.x = rv[0];
397  ret.y = rv[1];
398  return ret;
399 }
400 inline __device__ uint4 __ldg(const uint4 *ptr) {
401  typedef unsigned int ui4 __attribute__((ext_vector_type(4)));
402  ui4 rv = __nvvm_ldg_ui4(reinterpret_cast<const ui4 *>(ptr));
403  uint4 ret;
404  ret.x = rv[0];
405  ret.y = rv[1];
406  ret.z = rv[2];
407  ret.w = rv[3];
408  return ret;
409 }
410 inline __device__ ulonglong2 __ldg(const ulonglong2 *ptr) {
411  typedef unsigned long long ull2 __attribute__((ext_vector_type(2)));
412  ull2 rv = __nvvm_ldg_ull2(reinterpret_cast<const ull2 *>(ptr));
413  ulonglong2 ret;
414  ret.x = rv[0];
415  ret.y = rv[1];
416  return ret;
417 }
418 
419 inline __device__ float2 __ldg(const float2 *ptr) {
420  typedef float f2 __attribute__((ext_vector_type(2)));
421  f2 rv = __nvvm_ldg_f2(reinterpret_cast<const f2 *>(ptr));
422  float2 ret;
423  ret.x = rv[0];
424  ret.y = rv[1];
425  return ret;
426 }
427 inline __device__ float4 __ldg(const float4 *ptr) {
428  typedef float f4 __attribute__((ext_vector_type(4)));
429  f4 rv = __nvvm_ldg_f4(reinterpret_cast<const f4 *>(ptr));
430  float4 ret;
431  ret.x = rv[0];
432  ret.y = rv[1];
433  ret.z = rv[2];
434  ret.w = rv[3];
435  return ret;
436 }
437 inline __device__ double2 __ldg(const double2 *ptr) {
438  typedef double d2 __attribute__((ext_vector_type(2)));
439  d2 rv = __nvvm_ldg_d2(reinterpret_cast<const d2 *>(ptr));
440  double2 ret;
441  ret.x = rv[0];
442  ret.y = rv[1];
443  return ret;
444 }
445 
446 // TODO: Implement these as intrinsics, so the backend can work its magic on
447 // these. Alternatively, we could implement these as plain C and try to get
448 // llvm to recognize the relevant patterns.
449 inline __device__ unsigned __funnelshift_l(unsigned low32, unsigned high32,
450  unsigned shiftWidth) {
451  unsigned result;
452  asm("shf.l.wrap.b32 %0, %1, %2, %3;"
453  : "=r"(result)
454  : "r"(low32), "r"(high32), "r"(shiftWidth));
455  return result;
456 }
457 inline __device__ unsigned __funnelshift_lc(unsigned low32, unsigned high32,
458  unsigned shiftWidth) {
459  unsigned result;
460  asm("shf.l.clamp.b32 %0, %1, %2, %3;"
461  : "=r"(result)
462  : "r"(low32), "r"(high32), "r"(shiftWidth));
463  return result;
464 }
465 inline __device__ unsigned __funnelshift_r(unsigned low32, unsigned high32,
466  unsigned shiftWidth) {
467  unsigned result;
468  asm("shf.r.wrap.b32 %0, %1, %2, %3;"
469  : "=r"(result)
470  : "r"(low32), "r"(high32), "r"(shiftWidth));
471  return result;
472 }
473 inline __device__ unsigned __funnelshift_rc(unsigned low32, unsigned high32,
474  unsigned shiftWidth) {
475  unsigned ret;
476  asm("shf.r.clamp.b32 %0, %1, %2, %3;"
477  : "=r"(ret)
478  : "r"(low32), "r"(high32), "r"(shiftWidth));
479  return ret;
480 }
481 
482 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320
483 
484 #if CUDA_VERSION >= 11000
485 extern "C" {
486 __device__ inline size_t __nv_cvta_generic_to_global_impl(const void *__ptr) {
487  return (size_t)(void __attribute__((address_space(1))) *)__ptr;
488 }
489 __device__ inline size_t __nv_cvta_generic_to_shared_impl(const void *__ptr) {
490  return (size_t)(void __attribute__((address_space(3))) *)__ptr;
491 }
492 __device__ inline size_t __nv_cvta_generic_to_constant_impl(const void *__ptr) {
493  return (size_t)(void __attribute__((address_space(4))) *)__ptr;
494 }
495 __device__ inline size_t __nv_cvta_generic_to_local_impl(const void *__ptr) {
496  return (size_t)(void __attribute__((address_space(5))) *)__ptr;
497 }
498 __device__ inline void *__nv_cvta_global_to_generic_impl(size_t __ptr) {
499  return (void *)(void __attribute__((address_space(1))) *)__ptr;
500 }
501 __device__ inline void *__nv_cvta_shared_to_generic_impl(size_t __ptr) {
502  return (void *)(void __attribute__((address_space(3))) *)__ptr;
503 }
504 __device__ inline void *__nv_cvta_constant_to_generic_impl(size_t __ptr) {
505  return (void *)(void __attribute__((address_space(4))) *)__ptr;
506 }
507 __device__ inline void *__nv_cvta_local_to_generic_impl(size_t __ptr) {
508  return (void *)(void __attribute__((address_space(5))) *)__ptr;
509 }
510 __device__ inline cuuint32_t __nvvm_get_smem_pointer(void *__ptr) {
511  return __nv_cvta_generic_to_shared_impl(__ptr);
512 }
513 } // extern "C"
514 
515 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800
516 __device__ inline unsigned __reduce_add_sync(unsigned __mask,
517  unsigned __value) {
518  return __nvvm_redux_sync_add(__mask, __value);
519 }
520 __device__ inline unsigned __reduce_min_sync(unsigned __mask,
521  unsigned __value) {
522  return __nvvm_redux_sync_umin(__mask, __value);
523 }
524 __device__ inline unsigned __reduce_max_sync(unsigned __mask,
525  unsigned __value) {
526  return __nvvm_redux_sync_umax(__mask, __value);
527 }
528 __device__ inline int __reduce_min_sync(unsigned __mask, int __value) {
529  return __nvvm_redux_sync_min(__mask, __value);
530 }
531 __device__ inline int __reduce_max_sync(unsigned __mask, int __value) {
532  return __nvvm_redux_sync_max(__mask, __value);
533 }
534 __device__ inline unsigned __reduce_or_sync(unsigned __mask, unsigned __value) {
535  return __nvvm_redux_sync_or(__mask, __value);
536 }
537 __device__ inline unsigned __reduce_and_sync(unsigned __mask,
538  unsigned __value) {
539  return __nvvm_redux_sync_and(__mask, __value);
540 }
541 __device__ inline unsigned __reduce_xor_sync(unsigned __mask,
542  unsigned __value) {
543  return __nvvm_redux_sync_xor(__mask, __value);
544 }
545 
546 __device__ inline void __nv_memcpy_async_shared_global_4(void *__dst,
547  const void *__src,
548  unsigned __src_size) {
549  __nvvm_cp_async_ca_shared_global_4(
550  (void __attribute__((address_space(3))) *)__dst,
551  (const void __attribute__((address_space(1))) *)__src, __src_size);
552 }
553 __device__ inline void __nv_memcpy_async_shared_global_8(void *__dst,
554  const void *__src,
555  unsigned __src_size) {
556  __nvvm_cp_async_ca_shared_global_8(
557  (void __attribute__((address_space(3))) *)__dst,
558  (const void __attribute__((address_space(1))) *)__src, __src_size);
559 }
560 __device__ inline void __nv_memcpy_async_shared_global_16(void *__dst,
561  const void *__src,
562  unsigned __src_size) {
563  __nvvm_cp_async_ca_shared_global_16(
564  (void __attribute__((address_space(3))) *)__dst,
565  (const void __attribute__((address_space(1))) *)__src, __src_size);
566 }
567 
568 __device__ inline void *
569 __nv_associate_access_property(const void *__ptr, unsigned long long __prop) {
570  // TODO: it appears to provide compiler with some sort of a hint. We do not
571  // know what exactly it is supposed to do. However, CUDA headers suggest that
572  // just passing through __ptr should not affect correctness. They do so on
573  // pre-sm80 GPUs where this builtin is not available.
574  return (void*)__ptr;
575 }
576 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800
577 
578 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900
579 __device__ inline unsigned __isCtaShared(const void *ptr) {
580  return __isShared(ptr);
581 }
582 
583 __device__ inline unsigned __isClusterShared(const void *__ptr) {
584  return __nvvm_isspacep_shared_cluster(__ptr);
585 }
586 
587 __device__ inline void *__cluster_map_shared_rank(const void *__ptr,
588  unsigned __rank) {
589  return __nvvm_mapa((void *)__ptr, __rank);
590 }
591 
592 __device__ inline unsigned __cluster_query_shared_rank(const void *__ptr) {
593  return __nvvm_getctarank((void *)__ptr);
594 }
595 
596 __device__ inline uint2
597 __cluster_map_shared_multicast(const void *__ptr,
598  unsigned int __cluster_cta_mask) {
599  return make_uint2((unsigned)__cvta_generic_to_shared(__ptr),
600  __cluster_cta_mask);
601 }
602 
603 __device__ inline unsigned __clusterDimIsSpecified() {
604  return __nvvm_is_explicit_cluster();
605 }
606 
607 __device__ inline dim3 __clusterDim() {
608  return dim3(__nvvm_read_ptx_sreg_cluster_nctaid_x(),
609  __nvvm_read_ptx_sreg_cluster_nctaid_y(),
610  __nvvm_read_ptx_sreg_cluster_nctaid_z());
611 }
612 
613 __device__ inline dim3 __clusterRelativeBlockIdx() {
614  return dim3(__nvvm_read_ptx_sreg_cluster_ctaid_x(),
615  __nvvm_read_ptx_sreg_cluster_ctaid_y(),
616  __nvvm_read_ptx_sreg_cluster_ctaid_z());
617 }
618 
619 __device__ inline dim3 __clusterGridDimInClusters() {
620  return dim3(__nvvm_read_ptx_sreg_nclusterid_x(),
621  __nvvm_read_ptx_sreg_nclusterid_y(),
622  __nvvm_read_ptx_sreg_nclusterid_z());
623 }
624 
625 __device__ inline dim3 __clusterIdx() {
626  return dim3(__nvvm_read_ptx_sreg_clusterid_x(),
627  __nvvm_read_ptx_sreg_clusterid_y(),
628  __nvvm_read_ptx_sreg_clusterid_z());
629 }
630 
631 __device__ inline unsigned __clusterRelativeBlockRank() {
632  return __nvvm_read_ptx_sreg_cluster_ctarank();
633 }
634 
635 __device__ inline unsigned __clusterSizeInBlocks() {
636  return __nvvm_read_ptx_sreg_cluster_nctarank();
637 }
638 
639 __device__ inline void __cluster_barrier_arrive() {
640  __nvvm_barrier_cluster_arrive();
641 }
642 
643 __device__ inline void __cluster_barrier_arrive_relaxed() {
644  __nvvm_barrier_cluster_arrive_relaxed();
645 }
646 
647 __device__ inline void __cluster_barrier_wait() {
648  __nvvm_barrier_cluster_wait();
649 }
650 
651 __device__ inline void __threadfence_cluster() { __nvvm_fence_sc_cluster(); }
652 
653 __device__ inline float2 atomicAdd(float2 *__ptr, float2 __val) {
654  float2 __ret;
655  __asm__("atom.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
656  : "=f"(__ret.x), "=f"(__ret.y)
657  : "l"(__ptr), "f"(__val.x), "f"(__val.y));
658  return __ret;
659 }
660 
661 __device__ inline float2 atomicAdd_block(float2 *__ptr, float2 __val) {
662  float2 __ret;
663  __asm__("atom.cta.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
664  : "=f"(__ret.x), "=f"(__ret.y)
665  : "l"(__ptr), "f"(__val.x), "f"(__val.y));
666  return __ret;
667 }
668 
669 __device__ inline float2 atomicAdd_system(float2 *__ptr, float2 __val) {
670  float2 __ret;
671  __asm__("atom.sys.add.v2.f32 {%0, %1}, [%2], {%3, %4};"
672  : "=f"(__ret.x), "=f"(__ret.y)
673  : "l"(__ptr), "f"(__val.x), "f"(__val.y));
674  return __ret;
675 }
676 
677 __device__ inline float4 atomicAdd(float4 *__ptr, float4 __val) {
678  float4 __ret;
679  __asm__("atom.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
680  : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
681  : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w));
682  return __ret;
683 }
684 
685 __device__ inline float4 atomicAdd_block(float4 *__ptr, float4 __val) {
686  float4 __ret;
687  __asm__(
688  "atom.cta.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
689  : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
690  : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w));
691  return __ret;
692 }
693 
694 __device__ inline float4 atomicAdd_system(float4 *__ptr, float4 __val) {
695  float4 __ret;
696  __asm__(
697  "atom.sys.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};"
698  : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w)
699  : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w)
700  :);
701  return __ret;
702 }
703 
704 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900
705 #endif // CUDA_VERSION >= 11000
706 
707 #endif // defined(__CLANG_CUDA_INTRINSICS_H__)
__device__ unsigned __funnelshift_lc(unsigned low32, unsigned high32, unsigned shiftWidth)
__device__ unsigned __funnelshift_rc(unsigned low32, unsigned high32, unsigned shiftWidth)
#define __MAKE_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, __Mask, __Type)
__device__ unsigned __funnelshift_r(unsigned low32, unsigned high32, unsigned shiftWidth)
__device__ char __ldg(const char *ptr)
__device__ unsigned __funnelshift_l(unsigned low32, unsigned high32, unsigned shiftWidth)
_Float16 __2f16 __attribute__((ext_vector_type(2)))
Zeroes the upper 128 bits (bits 255:128) of all YMM registers.
#define __device__
struct dim3 dim3
static __inline__ void const void * __src
Definition: movdirintrin.h:45
static __inline__ void unsigned int __value
Definition: movdirintrin.h:20
vector< uint, 2 > uint2
vector< float, 4 > float4
vector< int, 4 > int4
vector< float, 2 > float2
vector< double, 2 > double2
vector< int, 2 > int2
vector< uint, 4 > uint4