Resnet50 train on Intel GPU
Introduction
Intel® Extension for TensorFlow* is compatible with stock Tensorflow*. This example shows resnet50 training.
Hardware Requirements
Verified Hardware Platforms:
Intel® Data Center GPU Max Series
Prerequisites
Model Code change
We optimized bf16 in resnet50.patch, and enable horovod and LARS in hvd_support.patch, please apply patch
git clone -b v2.8.0 https://github.com/tensorflow/models.git tensorflow-models
Prepare for GPU (Skip this step for CPU)
Refer to Prepare
Setup Running Environment
Setup for GPU
./pip_set_env.sh
Enable Running Environment
Enable oneAPI running environment (only for GPU) and virtual running environment.
For GPU, refer to Running
Apply Patch
If not use Horovod
git apply path/to/configure/resnet50.patch
If use Horovod
git apply path/to/hvd_configure/hvd_support.patch
Prepare ImageNet dataset
Using TFDS classifier_trainer.py supports ImageNet with TensorFlow Datasets(TFDS) .
Please see the following example snippet for more information on how to use TFDS to download and prepare datasets, and specifically the TFDS ImageNet readme for manual download instructions.
Legacy TFRecords Download the ImageNet dataset and convert it to TFRecord format. The following script and README provide a few options.
Note that the legacy ResNet runners, e.g. resnet/resnet_ctl_imagenet_main.py require TFRecords whereas classifier_trainer.py
can use both by setting the builder to ‘records’ or ‘tfds’ in the configurations.
Execution
Set Model Parameters
There are several config yaml files in configure and hvd_configure folder. Set one of them as CONFIG_FILE, then model would correspondly run with real data
or dummy data
. Single-tile please use yaml file in configure folder. Distribute training please use yaml file in hvd_configure folder, itex_bf16_lars.yaml
/itex_fp32_lars.yaml
for HVD real data and itex_dummy_bf16_lars.yaml
/itex_dummy_fp32_lars.yaml
for HVD dummy data.
Export those parameters to script or environment.
export PYTHONPATH=/the/path/to/tensorflow-models
MODEL_DIR=/the/path/to/output
DATA_DIR=/the/path/to/imagenet
CONFIG_FILE=path/to/itex_xx.yaml # itex_bf16.yaml/itex_fp32.yaml for accuracy, itex_dummy_bf16.yaml/itex_dummy_fp32.yaml for benchmark
Command
if [ ! -d "$MODEL_DIR" ]; then
mkdir -p $MODEL_DIR
else
rm -rf $MODEL_DIR && mkdir -p $MODEL_DIR
fi
python ${PYTHONPATH}/official/vision/image_classification/classifier_trainer.py \
--mode=train_and_eval \
--model_type=resnet \
--dataset=imagenet \
--model_dir=$MODEL_DIR \
--data_dir=$DATA_DIR \
--config_file=$CONFIG_FILE
Command with Horovod
Set NUMBER_OF_PROCESS
and PROCESS_PER_NODE
according to hvd rank number you need. Default value is 2 rank task.
if [ ! -d "$MODEL_DIR" ]; then
mkdir -p $MODEL_DIR
else
rm -rf $MODEL_DIR && mkdir -p $MODEL_DIR
fi
NUMBER_OF_PROCESS=2
PROCESS_PER_NODE=2
mpirun -np $NUMBER_OF_PROCESS -ppn $PROCESS_PER_NODE --prepend-rank \
python ${PYTHONPATH}/official/vision/image_classification/classifier_trainer.py \
--mode=train_and_eval \
--model_type=resnet \
--dataset=imagenet \
--model_dir=$MODEL_DIR \
--data_dir=$DATA_DIR \
--config_file=$CONFIG_FILE
Example Output without hvd
I0203 02:48:01.006297 139660941027136 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 1900 and 2000
I0203 02:48:16.590331 139660941027136 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 2000 and 2100
I0203 02:48:32.178206 139660941027136 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 2100 and 2200
I0203 02:48:47.790128 139660941027136 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 2200 and 2300
I0203 02:49:03.408512 139660941027136 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 2300 and 2400
Example Output with hvd
[0] I0817 00:09:07.602742 139898862851904 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 400 and 600
[1] I0817 00:09:07.603262 140612319840064 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 400 and 600
[0] I0817 00:10:07.917546 139898862851904 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 600 and 800
[1] I0817 00:10:07.917738 140612319840064 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 600 and 800
[0] I0817 00:11:08.277716 139898862851904 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 800 and 1000
[1] I0817 00:11:08.277811 140612319840064 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 800 and 1000
[0] I0817 00:12:08.555174 139898862851904 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 1000 and 1200
[1] I0817 00:12:08.555221 140612319840064 keras_utils.py:145] TimeHistory: xx seconds, xxxx examples/second between steps 1000 and 1200