Program Listing for File spirv_cross_containers.hpp

Return to documentation for file (include\spirv_cross\spirv_cross_containers.hpp)

/*
 * Copyright 2019-2021 Hans-Kristian Arntzen
 * SPDX-License-Identifier: Apache-2.0 OR MIT
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * At your option, you may choose to accept this material under either:
 *  1. The Apache License, Version 2.0, found at <http://www.apache.org/licenses/LICENSE-2.0>, or
 *  2. The MIT License, found at <http://opensource.org/licenses/MIT>.
 */

#ifndef SPIRV_CROSS_CONTAINERS_HPP
#define SPIRV_CROSS_CONTAINERS_HPP

#include "spirv_cross_error_handling.hpp"
#include <algorithm>
#include <exception>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <stack>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

#ifdef SPIRV_CROSS_NAMESPACE_OVERRIDE
#define SPIRV_CROSS_NAMESPACE SPIRV_CROSS_NAMESPACE_OVERRIDE
#else
#define SPIRV_CROSS_NAMESPACE spirv_cross
#endif

namespace SPIRV_CROSS_NAMESPACE
{
#ifndef SPIRV_CROSS_FORCE_STL_TYPES
// std::aligned_storage does not support size == 0, so roll our own.
template <typename T, size_t N>
class AlignedBuffer
{
public:
    T *data()
    {
#if defined(_MSC_VER) && _MSC_VER < 1900
        // MSVC 2013 workarounds, sigh ...
        // Only use this workaround on MSVC 2013 due to some confusion around default initialized unions.
        // Spec seems to suggest the memory will be zero-initialized, which is *not* what we want.
        return reinterpret_cast<T *>(u.aligned_char);
#else
        return reinterpret_cast<T *>(aligned_char);
#endif
    }

private:
#if defined(_MSC_VER) && _MSC_VER < 1900
    // MSVC 2013 workarounds, sigh ...
    union
    {
        char aligned_char[sizeof(T) * N];
        double dummy_aligner;
    } u;
#else
    alignas(T) char aligned_char[sizeof(T) * N];
#endif
};

template <typename T>
class AlignedBuffer<T, 0>
{
public:
    T *data()
    {
        return nullptr;
    }
};

// An immutable version of SmallVector which erases type information about storage.
template <typename T>
class VectorView
{
public:
    T &operator[](size_t i) SPIRV_CROSS_NOEXCEPT
    {
        return ptr[i];
    }

    const T &operator[](size_t i) const SPIRV_CROSS_NOEXCEPT
    {
        return ptr[i];
    }

    bool empty() const SPIRV_CROSS_NOEXCEPT
    {
        return buffer_size == 0;
    }

    size_t size() const SPIRV_CROSS_NOEXCEPT
    {
        return buffer_size;
    }

    T *data() SPIRV_CROSS_NOEXCEPT
    {
        return ptr;
    }

    const T *data() const SPIRV_CROSS_NOEXCEPT
    {
        return ptr;
    }

    T *begin() SPIRV_CROSS_NOEXCEPT
    {
        return ptr;
    }

    T *end() SPIRV_CROSS_NOEXCEPT
    {
        return ptr + buffer_size;
    }

    const T *begin() const SPIRV_CROSS_NOEXCEPT
    {
        return ptr;
    }

    const T *end() const SPIRV_CROSS_NOEXCEPT
    {
        return ptr + buffer_size;
    }

    T &front() SPIRV_CROSS_NOEXCEPT
    {
        return ptr[0];
    }

    const T &front() const SPIRV_CROSS_NOEXCEPT
    {
        return ptr[0];
    }

    T &back() SPIRV_CROSS_NOEXCEPT
    {
        return ptr[buffer_size - 1];
    }

    const T &back() const SPIRV_CROSS_NOEXCEPT
    {
        return ptr[buffer_size - 1];
    }

    // Makes it easier to consume SmallVector.
#if defined(_MSC_VER) && _MSC_VER < 1900
    explicit operator std::vector<T>() const
    {
        // Another MSVC 2013 workaround. It does not understand lvalue/rvalue qualified operations.
        return std::vector<T>(ptr, ptr + buffer_size);
    }
#else
    // Makes it easier to consume SmallVector.
    explicit operator std::vector<T>() const &
    {
        return std::vector<T>(ptr, ptr + buffer_size);
    }

    // If we are converting as an r-value, we can pilfer our elements.
    explicit operator std::vector<T>() &&
    {
        return std::vector<T>(std::make_move_iterator(ptr), std::make_move_iterator(ptr + buffer_size));
    }
#endif

    // Avoid sliced copies. Base class should only be read as a reference.
    VectorView(const VectorView &) = delete;
    void operator=(const VectorView &) = delete;

protected:
    VectorView() = default;
    T *ptr = nullptr;
    size_t buffer_size = 0;
};

// Simple vector which supports up to N elements inline, without malloc/free.
// We use a lot of throwaway vectors all over the place which triggers allocations.
// This class only implements the subset of std::vector we need in SPIRV-Cross.
// It is *NOT* a drop-in replacement in general projects.
template <typename T, size_t N = 8>
class SmallVector : public VectorView<T>
{
public:
    SmallVector() SPIRV_CROSS_NOEXCEPT
    {
        this->ptr = stack_storage.data();
        buffer_capacity = N;
    }

    template <typename U>
    SmallVector(const U *arg_list_begin, const U *arg_list_end) SPIRV_CROSS_NOEXCEPT : SmallVector()
    {
        auto count = size_t(arg_list_end - arg_list_begin);
        reserve(count);
        for (size_t i = 0; i < count; i++, arg_list_begin++)
            new (&this->ptr[i]) T(*arg_list_begin);
        this->buffer_size = count;
    }

    template <typename U>
    SmallVector(std::initializer_list<U> init) SPIRV_CROSS_NOEXCEPT : SmallVector(init.begin(), init.end())
    {
    }

    template <typename U, size_t M>
    explicit SmallVector(const U (&init)[M]) SPIRV_CROSS_NOEXCEPT : SmallVector(init, init + M)
    {
    }

    SmallVector(SmallVector &&other) SPIRV_CROSS_NOEXCEPT : SmallVector()
    {
        *this = std::move(other);
    }

    SmallVector &operator=(SmallVector &&other) SPIRV_CROSS_NOEXCEPT
    {
        clear();
        if (other.ptr != other.stack_storage.data())
        {
            // Pilfer allocated pointer.
            if (this->ptr != stack_storage.data())
                free(this->ptr);
            this->ptr = other.ptr;
            this->buffer_size = other.buffer_size;
            buffer_capacity = other.buffer_capacity;
            other.ptr = nullptr;
            other.buffer_size = 0;
            other.buffer_capacity = 0;
        }
        else
        {
            // Need to move the stack contents individually.
            reserve(other.buffer_size);
            for (size_t i = 0; i < other.buffer_size; i++)
            {
                new (&this->ptr[i]) T(std::move(other.ptr[i]));
                other.ptr[i].~T();
            }
            this->buffer_size = other.buffer_size;
            other.buffer_size = 0;
        }
        return *this;
    }

    SmallVector(const SmallVector &other) SPIRV_CROSS_NOEXCEPT : SmallVector()
    {
        *this = other;
    }

    SmallVector &operator=(const SmallVector &other) SPIRV_CROSS_NOEXCEPT
    {
        if (this == &other)
            return *this;

        clear();
        reserve(other.buffer_size);
        for (size_t i = 0; i < other.buffer_size; i++)
            new (&this->ptr[i]) T(other.ptr[i]);
        this->buffer_size = other.buffer_size;
        return *this;
    }

    explicit SmallVector(size_t count) SPIRV_CROSS_NOEXCEPT : SmallVector()
    {
        resize(count);
    }

    ~SmallVector()
    {
        clear();
        if (this->ptr != stack_storage.data())
            free(this->ptr);
    }

    void clear() SPIRV_CROSS_NOEXCEPT
    {
        for (size_t i = 0; i < this->buffer_size; i++)
            this->ptr[i].~T();
        this->buffer_size = 0;
    }

    void push_back(const T &t) SPIRV_CROSS_NOEXCEPT
    {
        reserve(this->buffer_size + 1);
        new (&this->ptr[this->buffer_size]) T(t);
        this->buffer_size++;
    }

    void push_back(T &&t) SPIRV_CROSS_NOEXCEPT
    {
        reserve(this->buffer_size + 1);
        new (&this->ptr[this->buffer_size]) T(std::move(t));
        this->buffer_size++;
    }

    void pop_back() SPIRV_CROSS_NOEXCEPT
    {
        // Work around false positive warning on GCC 8.3.
        // Calling pop_back on empty vector is undefined.
        if (!this->empty())
            resize(this->buffer_size - 1);
    }

    template <typename... Ts>
    void emplace_back(Ts &&... ts) SPIRV_CROSS_NOEXCEPT
    {
        reserve(this->buffer_size + 1);
        new (&this->ptr[this->buffer_size]) T(std::forward<Ts>(ts)...);
        this->buffer_size++;
    }

    void reserve(size_t count) SPIRV_CROSS_NOEXCEPT
    {
        if ((count > (std::numeric_limits<size_t>::max)() / sizeof(T)) ||
            (count > (std::numeric_limits<size_t>::max)() / 2))
        {
            // Only way this should ever happen is with garbage input, terminate.
            std::terminate();
        }

        if (count > buffer_capacity)
        {
            size_t target_capacity = buffer_capacity;
            if (target_capacity == 0)
                target_capacity = 1;

            // Weird parens works around macro issues on Windows if NOMINMAX is not used.
            target_capacity = (std::max)(target_capacity, N);

            // Need to ensure there is a POT value of target capacity which is larger than count,
            // otherwise this will overflow.
            while (target_capacity < count)
                target_capacity <<= 1u;

            T *new_buffer =
                target_capacity > N ? static_cast<T *>(malloc(target_capacity * sizeof(T))) : stack_storage.data();

            // If we actually fail this malloc, we are hosed anyways, there is no reason to attempt recovery.
            if (!new_buffer)
                std::terminate();

            // In case for some reason two allocations both come from same stack.
            if (new_buffer != this->ptr)
            {
                // We don't deal with types which can throw in move constructor.
                for (size_t i = 0; i < this->buffer_size; i++)
                {
                    new (&new_buffer[i]) T(std::move(this->ptr[i]));
                    this->ptr[i].~T();
                }
            }

            if (this->ptr != stack_storage.data())
                free(this->ptr);
            this->ptr = new_buffer;
            buffer_capacity = target_capacity;
        }
    }

    void insert(T *itr, const T *insert_begin, const T *insert_end) SPIRV_CROSS_NOEXCEPT
    {
        auto count = size_t(insert_end - insert_begin);
        if (itr == this->end())
        {
            reserve(this->buffer_size + count);
            for (size_t i = 0; i < count; i++, insert_begin++)
                new (&this->ptr[this->buffer_size + i]) T(*insert_begin);
            this->buffer_size += count;
        }
        else
        {
            if (this->buffer_size + count > buffer_capacity)
            {
                auto target_capacity = this->buffer_size + count;
                if (target_capacity == 0)
                    target_capacity = 1;
                if (target_capacity < N)
                    target_capacity = N;

                while (target_capacity < count)
                    target_capacity <<= 1u;

                // Need to allocate new buffer. Move everything to a new buffer.
                T *new_buffer =
                    target_capacity > N ? static_cast<T *>(malloc(target_capacity * sizeof(T))) : stack_storage.data();

                // If we actually fail this malloc, we are hosed anyways, there is no reason to attempt recovery.
                if (!new_buffer)
                    std::terminate();

                // First, move elements from source buffer to new buffer.
                // We don't deal with types which can throw in move constructor.
                auto *target_itr = new_buffer;
                auto *original_source_itr = this->begin();

                if (new_buffer != this->ptr)
                {
                    while (original_source_itr != itr)
                    {
                        new (target_itr) T(std::move(*original_source_itr));
                        original_source_itr->~T();
                        ++original_source_itr;
                        ++target_itr;
                    }
                }

                // Copy-construct new elements.
                for (auto *source_itr = insert_begin; source_itr != insert_end; ++source_itr, ++target_itr)
                    new (target_itr) T(*source_itr);

                // Move over the other half.
                if (new_buffer != this->ptr || insert_begin != insert_end)
                {
                    while (original_source_itr != this->end())
                    {
                        new (target_itr) T(std::move(*original_source_itr));
                        original_source_itr->~T();
                        ++original_source_itr;
                        ++target_itr;
                    }
                }

                if (this->ptr != stack_storage.data())
                    free(this->ptr);
                this->ptr = new_buffer;
                buffer_capacity = target_capacity;
            }
            else
            {
                // Move in place, need to be a bit careful about which elements are constructed and which are not.
                // Move the end and construct the new elements.
                auto *target_itr = this->end() + count;
                auto *source_itr = this->end();
                while (target_itr != this->end() && source_itr != itr)
                {
                    --target_itr;
                    --source_itr;
                    new (target_itr) T(std::move(*source_itr));
                }

                // For already constructed elements we can move-assign.
                std::move_backward(itr, source_itr, target_itr);

                // For the inserts which go to already constructed elements, we can do a plain copy.
                while (itr != this->end() && insert_begin != insert_end)
                    *itr++ = *insert_begin++;

                // For inserts into newly allocated memory, we must copy-construct instead.
                while (insert_begin != insert_end)
                {
                    new (itr) T(*insert_begin);
                    ++itr;
                    ++insert_begin;
                }
            }

            this->buffer_size += count;
        }
    }

    void insert(T *itr, const T &value) SPIRV_CROSS_NOEXCEPT
    {
        insert(itr, &value, &value + 1);
    }

    T *erase(T *itr) SPIRV_CROSS_NOEXCEPT
    {
        std::move(itr + 1, this->end(), itr);
        this->ptr[--this->buffer_size].~T();
        return itr;
    }

    void erase(T *start_erase, T *end_erase) SPIRV_CROSS_NOEXCEPT
    {
        if (end_erase == this->end())
        {
            resize(size_t(start_erase - this->begin()));
        }
        else
        {
            auto new_size = this->buffer_size - (end_erase - start_erase);
            std::move(end_erase, this->end(), start_erase);
            resize(new_size);
        }
    }

    void resize(size_t new_size) SPIRV_CROSS_NOEXCEPT
    {
        if (new_size < this->buffer_size)
        {
            for (size_t i = new_size; i < this->buffer_size; i++)
                this->ptr[i].~T();
        }
        else if (new_size > this->buffer_size)
        {
            reserve(new_size);
            for (size_t i = this->buffer_size; i < new_size; i++)
                new (&this->ptr[i]) T();
        }

        this->buffer_size = new_size;
    }

private:
    size_t buffer_capacity = 0;
    AlignedBuffer<T, N> stack_storage;
};

// A vector without stack storage.
// Could also be a typedef-ed to std::vector,
// but might as well use the one we have.
template <typename T>
using Vector = SmallVector<T, 0>;

#else // SPIRV_CROSS_FORCE_STL_TYPES

template <typename T, size_t N = 8>
using SmallVector = std::vector<T>;
template <typename T>
using Vector = std::vector<T>;
template <typename T>
using VectorView = std::vector<T>;

#endif // SPIRV_CROSS_FORCE_STL_TYPES

// An object pool which we use for allocating IVariant-derived objects.
// We know we are going to allocate a bunch of objects of each type,
// so amortize the mallocs.
class ObjectPoolBase
{
public:
    virtual ~ObjectPoolBase() = default;
    virtual void deallocate_opaque(void *ptr) = 0;
};

template <typename T>
class ObjectPool : public ObjectPoolBase
{
public:
    explicit ObjectPool(unsigned start_object_count_ = 16)
        : start_object_count(start_object_count_)
    {
    }

    template <typename... P>
    T *allocate(P &&... p)
    {
        if (vacants.empty())
        {
            unsigned num_objects = start_object_count << memory.size();
            T *ptr = static_cast<T *>(malloc(num_objects * sizeof(T)));
            if (!ptr)
                return nullptr;

            vacants.reserve(num_objects);
            for (unsigned i = 0; i < num_objects; i++)
                vacants.push_back(&ptr[i]);

            memory.emplace_back(ptr);
        }

        T *ptr = vacants.back();
        vacants.pop_back();
        new (ptr) T(std::forward<P>(p)...);
        return ptr;
    }

    void deallocate(T *ptr)
    {
        ptr->~T();
        vacants.push_back(ptr);
    }

    void deallocate_opaque(void *ptr) override
    {
        deallocate(static_cast<T *>(ptr));
    }

    void clear()
    {
        vacants.clear();
        memory.clear();
    }

protected:
    Vector<T *> vacants;

    struct MallocDeleter
    {
        void operator()(T *ptr)
        {
            ::free(ptr);
        }
    };

    SmallVector<std::unique_ptr<T, MallocDeleter>> memory;
    unsigned start_object_count;
};

template <size_t StackSize = 4096, size_t BlockSize = 4096>
class StringStream
{
public:
    StringStream()
    {
        reset();
    }

    ~StringStream()
    {
        reset();
    }

    // Disable copies and moves. Makes it easier to implement, and we don't need it.
    StringStream(const StringStream &) = delete;
    void operator=(const StringStream &) = delete;

    template <typename T, typename std::enable_if<!std::is_floating_point<T>::value, int>::type = 0>
    StringStream &operator<<(const T &t)
    {
        auto s = std::to_string(t);
        append(s.data(), s.size());
        return *this;
    }

    // Only overload this to make float/double conversions ambiguous.
    StringStream &operator<<(uint32_t v)
    {
        auto s = std::to_string(v);
        append(s.data(), s.size());
        return *this;
    }

    StringStream &operator<<(char c)
    {
        append(&c, 1);
        return *this;
    }

    StringStream &operator<<(const std::string &s)
    {
        append(s.data(), s.size());
        return *this;
    }

    StringStream &operator<<(const char *s)
    {
        append(s, strlen(s));
        return *this;
    }

    template <size_t N>
    StringStream &operator<<(const char (&s)[N])
    {
        append(s, strlen(s));
        return *this;
    }

    std::string str() const
    {
        std::string ret;
        size_t target_size = 0;
        for (auto &saved : saved_buffers)
            target_size += saved.offset;
        target_size += current_buffer.offset;
        ret.reserve(target_size);

        for (auto &saved : saved_buffers)
            ret.insert(ret.end(), saved.buffer, saved.buffer + saved.offset);
        ret.insert(ret.end(), current_buffer.buffer, current_buffer.buffer + current_buffer.offset);
        return ret;
    }

    void reset()
    {
        for (auto &saved : saved_buffers)
            if (saved.buffer != stack_buffer)
                free(saved.buffer);
        if (current_buffer.buffer != stack_buffer)
            free(current_buffer.buffer);

        saved_buffers.clear();
        current_buffer.buffer = stack_buffer;
        current_buffer.offset = 0;
        current_buffer.size = sizeof(stack_buffer);
    }

private:
    struct Buffer
    {
        char *buffer = nullptr;
        size_t offset = 0;
        size_t size = 0;
    };
    Buffer current_buffer;
    char stack_buffer[StackSize];
    SmallVector<Buffer> saved_buffers;

    void append(const char *s, size_t len)
    {
        size_t avail = current_buffer.size - current_buffer.offset;
        if (avail < len)
        {
            if (avail > 0)
            {
                memcpy(current_buffer.buffer + current_buffer.offset, s, avail);
                s += avail;
                len -= avail;
                current_buffer.offset += avail;
            }

            saved_buffers.push_back(current_buffer);
            size_t target_size = len > BlockSize ? len : BlockSize;
            current_buffer.buffer = static_cast<char *>(malloc(target_size));
            if (!current_buffer.buffer)
                SPIRV_CROSS_THROW("Out of memory.");

            memcpy(current_buffer.buffer, s, len);
            current_buffer.offset = len;
            current_buffer.size = target_size;
        }
        else
        {
            memcpy(current_buffer.buffer + current_buffer.offset, s, len);
            current_buffer.offset += len;
        }
    }
};

} // namespace SPIRV_CROSS_NAMESPACE

#endif