Source code for tlt.datasets.text_classification.text_classification_dataset

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (c) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
#

import abc

from tlt.datasets.dataset import BaseDataset


[docs]class TextClassificationDataset(BaseDataset): """ Base class for a text classification dataset """
[docs] def __init__(self, dataset_dir, dataset_name="", dataset_catalog=""): BaseDataset.__init__(self, dataset_dir, dataset_name, dataset_catalog)
@property @abc.abstractmethod def class_names(self): pass def get_str_label(self, numerical_value): """ Returns the string label (class name) associated with the specified numerical value. If the numerical value provided is a float, it will be rounded to the nearest integer. Args: numerical_value (int or float): Numerical label value Raises: TypeError: if the numerical value is not a float or an integer ValueError: if the numerical value does not map to a class label """ if isinstance(numerical_value, float): numerical_value = int(round(numerical_value)) if not isinstance(numerical_value, int): raise TypeError("Invalid type for the numerical value. Expected an integer or float value.") if len(self.class_names) > numerical_value: return self.class_names[numerical_value] else: raise ValueError("The numerical value {} exceeds the number of classes in the dataset ({})".format( numerical_value, len(self.class_names)))