tlt.models.text_classification.tf_text_classification_model.TFTextClassificationModel

class tlt.models.text_classification.tf_text_classification_model.TFTextClassificationModel(model_name: str, model=None, optimizer=None, loss=None, **kwargs)[source]

Class to represent a TF pretrained model that can be used for binary text classification fine tuning.

__init__(model_name: str, model=None, optimizer=None, loss=None, **kwargs)[source]

Class constructor

Methods

__init__(model_name[, model, optimizer, loss])

Class constructor

benchmark(dataset[, saved_model_dir, ...])

Use Intel Neural Compressor to benchmark the model with the dataset argument.

cleanup_saved_objects_for_distributed()

evaluate(dataset[, use_test_set, ...])

If there is a validation set, evaluation will be done on it (by default) or on the test set (by setting use_test_set=True).

export(output_dir)

Exports a trained model as a saved_model.pb file.

export_for_distributed([export_dir, ...])

Exports the model, optimizer, loss, train data and validation data to the export_dir for distributed script to access.

load_from_directory(model_dir)

Loads a saved model from the specified directory

optimize_graph(output_dir[, overwrite_model])

Performs FP32 graph optimization using the Intel Neural Compressor on the model and writes the inference-optimized model to the output_dir.

predict(input_samples[, ...])

Generates predictions for the specified input samples.

quantize(output_dir, dataset[, config, ...])

Performs post training quantization using the Intel Neural Compressor on the model using the dataset.

set_auto_mixed_precision(...)

Enable auto mixed precision for training.

train(dataset, output_dir[, epochs, ...])

Trains the model using the specified binary text classification dataset.

Attributes

dropout_layer_rate

The probability of any one node being dropped when a dropout layer is used

framework

Framework with which the model is compatible

learning_rate

Learning rate for the model

model_name

Name of the model

num_classes

The number of output neurons in the model; equal to the number of classes in the dataset

preprocessor

Preprocessor for the model

use_case

Use case (or category) to which the model belongs