tlt.models.image_classification.keras_image_classification_model.KerasImageClassificationModel

class tlt.models.image_classification.keras_image_classification_model.KerasImageClassificationModel(model_name: str, model=None, optimizer=None, loss=None, **kwargs)[source]

Class to represent a Keras.applications pretrained model for image classification

__init__(model_name: str, model=None, optimizer=None, loss=None, **kwargs)[source]

Class constructor

Methods

__init__(model_name[, model, optimizer, loss])

Class constructor

benchmark(dataset[, saved_model_dir, ...])

Use Intel Neural Compressor to benchmark the model with the dataset argument.

cleanup_saved_objects_for_distributed()

evaluate(dataset[, use_test_set, callbacks, ...])

Evaluate the accuracy of the model on a dataset.

export(output_dir)

Exports a trained model as a saved_model.pb file.

export_for_distributed([export_dir, ...])

Exports the model, optimizer, loss, train data and validation data to the export_dir for distributed script to access.

load_from_directory(model_dir)

Loads a saved model from the specified directory

optimize_graph(output_dir[, overwrite_model])

Performs FP32 graph optimization using the Intel Neural Compressor on the model and writes the inference-optimized model to the output_dir.

predict(input_samples[, return_type, ...])

Perform feed-forward inference and predict the classes of the input_samples.

quantize(output_dir, dataset[, config, ...])

Performs post training quantization using the Intel Neural Compressor on the model using the dataset.

set_auto_mixed_precision(...)

Enable auto mixed precision for training.

train(dataset, output_dir[, epochs, ...])

Trains the model using the specified image classification dataset.

Attributes

do_fine_tuning

When True, the weights in all of the model's layers will be trainable.

dropout_layer_rate

The probability of any one node being dropped when a dropout layer is used

feature_vector_url

The public URL used to download the headless TFHub model used for transfer learning

framework

Framework with which the model is compatible

image_size

The fixed image size that the pretrained model expects as input, in pixels with equal width and height

learning_rate

Learning rate for the model

model_name

Name of the model

model_url

The public URL used to download the TFHub model

num_classes

The number of output neurons in the model; equal to the number of classes in the dataset

preprocessor

Preprocessor for the model

use_case

Use case (or category) to which the model belongs