tlt.models.image_classification.image_classification_model.ImageClassificationModel¶
- class tlt.models.image_classification.image_classification_model.ImageClassificationModel(image_size, do_fine_tuning: bool, dropout_layer_rate: int, model_name: str, framework: FrameworkType, use_case: UseCaseType)[source]¶
Base class to represent a pretrained model for image classification
- __init__(image_size, do_fine_tuning: bool, dropout_layer_rate: int, model_name: str, framework: FrameworkType, use_case: UseCaseType)[source]¶
Class constructor
Methods
__init__(image_size, do_fine_tuning, ...)Class constructor
benchmark(dataset[, saved_model_dir, ...])Use Intel Neural Compressor to benchmark the model with the dataset argument.
evaluate(dataset)Evaluate the model using the specified dataset.
export(output_dir)Export the serialized model to an output directory
load_from_directory(model_dir)Load a model from a directory
optimize_graph(output_dir[, overwrite_model])Performs FP32 graph optimization using the Intel Neural Compressor on the model and writes the inference-optimized model to the output_dir.
predict(input_samples)Generates predictions for the input samples.
quantize(output_dir, dataset[, config, ...])Performs post training quantization using the Intel Neural Compressor on the model using the dataset.
train(dataset, output_dir[, epochs, ...])Train the model using the specified dataset
Attributes
do_fine_tuningWhen True, the weights in all of the model's layers will be trainable.
dropout_layer_rateThe probability of any one node being dropped when a dropout layer is used
frameworkFramework with which the model is compatible
image_sizeThe fixed image size that the pretrained model expects as input, in pixels with equal width and height
learning_rateLearning rate for the model
model_nameName of the model
num_classesThe number of output neurons in the model; equal to the number of classes in the dataset
preprocessorPreprocessor for the model
use_caseUse case (or category) to which the model belongs