tlt.models.image_anomaly_detection.torchvision_image_anomaly_detection_model.TorchvisionImageAnomalyDetectionModel.quantize¶
- TorchvisionImageAnomalyDetectionModel.quantize(output_dir, dataset, config=None, overwrite_model=False)¶
Performs post training quantization using the Intel Neural Compressor on the model using the dataset. The dataset’s training subset will be used as the calibration data and its validation or test subset will be used for evaluation. The quantized model is written to the output directory.
- Parameters
output_dir (str) – Writable output directory to save the quantized model
dataset (ImageClassificationDataset) – dataset to quantize with
config (PostTrainingQuantConfig) – Optional, for customizing the quantization parameters
overwrite_model (bool) – Specify whether or not to overwrite the output_dir, if it already exists (default: False)
- Returns
None
- Raises
FileExistsError – if the output_dir already has a model.pt file
ValueError – if the dataset is not compatible for quantizing the model