Citations¶
dlib: a toolkit for making real world machine learning and data analysis applications in C++. Website, 2023. Accessed: 2023-03-26. URL: http://dlib.net/.
Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A, 70:052328, Nov 2004. doi:10.1103/PhysRevA.70.052328.
Joseph C. Bardin, Daniel H. Slichter, and David J. Reilly. Microwaves in quantum computing. IEEE Journal of Microwaves, 1(1):403–427, 2021. doi:10.1109/JMW.2020.3034071.
John S Bell. On the Einstein Podolsky Rosen paradox. Physics, 1(3):195–290, 1964.
Charles H. Bennett and Gilles Brassard. Quantum cryptography: public key distribution and coin tossing. Theoretical Computer Science, 560:7–11, 2014. Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84. doi:https://doi.org/10.1016/j.tcs.2014.05.025.
Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and others. Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644, 2021. doi:10.1038/s42254-021-00348-9.
David P. DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik, 48(9-11):771–783, 2000. doi:10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.
Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-mechanical description of physical reality be considered complete? Physical review, 47(10):777–780, 1935. doi:10.1103/PhysRev.47.777.
Michael R. Geller and Zhongyuan Zhou. Efficient error models for fault-tolerant architectures and the Pauli twirling approximation. Phys. Rev. A, 88:012314, Jul 2013. doi:10.1103/PhysRevA.88.012314.
I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys., 86:153–185, Mar 2014. doi:10.1103/RevModPhys.86.153.
Daniel Gottesman. The heisenberg representation of quantum computers. 1998. arXiv:quant-ph/9807006.
Gian Giacomo Guerreschi, Justin Hogaboam, Fabio Baruffa, and Nicolas P D Sawaya. Intel quantum simulator: a cloud-ready high-performance simulator of quantum circuits. Quantum Science and Technology, 5(3):034007, may 2020. doi:10.1088/2058-9565/ab8505.
M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H. -J. Briegel. Entanglement in graph states and its applications. 2006. arXiv:quant-ph/0602096.
Jack D Hidary and Jack D Hidary. Quantum computing: an applied approach. Volume 1. Springer, 2019. doi:10.1007/978-3-030-23922-0.
Pradnya Khalate, Xin-Chuan Wu, Shavindra Premaratne, Justin Hogaboam, Adam Holmes, Albert Schmitz, Gian Giacomo Guerreschi, Xiang Zou, and A. Y. Matsuura. An LLVM-based C++ compiler toolchain for variational hybrid quantum-classical algorithms and quantum accelerators. 2022. arXiv:2202.11142.
R. Kotlyar, S. Premaratne, G. Zheng, J. Corrigan, R. Pillarisetty, S. Neyens, O. Zietz, T. Watson, F. Luthi, F. Borjans, L. Lampert, E. Henry, H. George, S. Bojarski, J. Roberts, A. Y. Matsuura, and J. S. Clarke. Mitigating impact of defects on performance with classical device engineering of scaled si/sige qubit arrays. In 2022 International Electron Devices Meeting (IEDM), volume, 8.4.1–8.4.4. 2022. doi:10.1109/IEDM45625.2022.10019382.
Thaddeus D Ladd, Fedor Jelezko, Raymond Laflamme, Yasunobu Nakamura, Christopher Monroe, and Jeremy Lloyd O’Brien. Quantum computers. nature, 464(7285):45–53, 2010. doi:10.1038/nature08812.
Daniel Loss and David P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev. A, 57:120–126, Jan 1998. doi:10.1103/PhysRevA.57.120.
Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum information. Volume 2. Cambridge university press Cambridge, 2010. doi:10.1017/CBO9780511976667.
Matteo Paris and Jaroslav Řeháček. Quantum state estimation. Volume 649. Springer Science & Business Media, 2004. doi:10.1007/b98673.
Jennifer Paykin, Albert T. Schmitz, Mohannad Ibrahim, Xin-Chuan Wu, and A. Y. Matsuura. Pcoast: a pauli-based quantum circuit optimization framework. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), volume 01, 715–726. 2023. doi:10.1109/QCE57702.2023.00087.
Jennifer Paykin, Albert T. Schmitz, and A. Y. Matsuura. A functional approach to the modular construction of quantum logic: part i. In APS March Meeting Abstracts, volume 2023, RR08–007. 2023. URL: https://meetings.aps.org/Meeting/MAR23/Session/RR08.7.
Shavindra P. Premaratne and A. Y. Matsuura. Engineering a cost function for real-world implementation of a variational quantum algorithm. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), volume, 278–285. 2020. doi:10.1109/QCE49297.2020.00042.
R Sagastizabal, SP Premaratne, BA Klaver, MA Rol, V Negîrneac, MS Moreira, X Zou, S Johri, N Muthusubramanian, M Beekman, and others. Variational preparation of finite-temperature states on a quantum computer. npj Quantum Information, 7(1):130, 2021. doi:10.1038/s41534-021-00468-1.
Albert Schmitz. A functional approach to the modular construction of quantum logic: part ii. In APS March Meeting Abstracts, volume 2023, RR08–008. 2023. URL: https://meetings.aps.org/Meeting/MAR23/Session/RR08.8.
Albert T. Schmitz, Mohannad Ibrahim, Nicolas P. D. Sawaya, Gian Giacomo Guerreschi, Jennifer Paykin, Xin-Chuan Wu, and A. Y. Matsuura. Optimization at the interface of unitary and non-unitary quantum operations in pcoast. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), volume 01, 727–738. 2023. doi:10.1109/QCE57702.2023.00088.
Albert T. Schmitz, Nicolas P. D. Sawaya, Sonika Johri, and A. Y. Matsuura. Graph optimization perspective for low-depth trotter-suzuki decomposition. Phys. Rev. A, 109:042418, Apr 2024. doi:10.1103/PhysRevA.109.042418.
Daniel A Steck. Quantum and atom optics. may 2020. Revision 0.13.1. URL: https://atomoptics.uoregon.edu/~dsteck/teaching/.
Frederick W. Strauch, Philip R. Johnson, Alex J. Dragt, C. J. Lobb, J. R. Anderson, and F. C. Wellstood. Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett., 91:167005, Oct 2003. doi:10.1103/PhysRevLett.91.167005.
Bjarne Stroustrup. A Tour of C++. Addison-Wesley Professional, 2022. doi:10.1007/978-3-030-23922-0.
Baladitya Suri. Transmon qubits coupled to superconducting lumped element resonators. PhD thesis, University of Maryland, 2015. URL: https://www.proquest.com/dissertations-theses/transmon-qubits-coupled-superconducting-lumped/docview/1702138107/se-2.
Maarten Van Den Nes. Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond. Quantum Info. Comput., 10(3):258–271, mar 2010. doi:10.5555/2011350.2011356.
TF Watson, SGJ Philips, Erika Kawakami, DR Ward, Pasquale Scarlino, Menno Veldhorst, DE Savage, MG Lagally, Mark Friesen, SN Coppersmith, and others. A programmable two-qubit quantum processor in silicon. nature, 555(7698):633–637, 2018. doi:10.1038/nature25766.
Noson S. Yanofsky and Mirco A. Mannucci. Quantum Computing for Computer Scientists. Cambridge University Press, 2008. doi:10.1017/CBO9780511813887.
Tzu-Ching Yen, Vladyslav Verteletskyi, and Artur F. Izmaylov. Measuring all compatible operators in one series of single-qubit measurements using unitary transformations. Journal of Chemical Theory and Computation, 16(4):2400–2409, 2020. PMID: 32150412. doi:10.1021/acs.jctc.0c00008.
Daniel Zeuch, Fabian Hassler, Jesse J. Slim, and David P. DiVincenzo. Exact rotating wave approximation. Annals of Physics, 423:168327, 2020. doi:10.1016/j.aop.2020.168327.
AMJ Zwerver, T Krähenmann, TF Watson, Lester Lampert, Hubert C George, Ravi Pillarisetty, SA Bojarski, Payam Amin, SV Amitonov, JM Boter, and others. Qubits made by advanced semiconductor manufacturing. Nature Electronics, 5(3):184–190, 2022.
Intel Labs. Hybrid quantum-classical library. GitHub repository, 2023. Accessed on: 2023-03-26. URL: https://github.com/IntelLabs/Hybrid-Quantum-Classical-Library.