Transformers-like API ===== 1. [Introduction](#introduction) 2. [Supported Algorithms](#supported-algorithms) 3. [Usage For Intel CPU](#usage-for-cpu) 4. [Usage For Intel GPU](#usage-for-intel-gpu) 5. [Examples](#examples) ## Introduction Transformers-like API provides a seamless user experience of model compressions on Transformer-based models by extending Hugging Face transformers APIs, leveraging neural compressor existing weight-only quantization capability and replacing Linear operator with Intel® Extension for PyTorch. ## Supported Algorithms | Support Device | RTN | AWQ | TEQ | GPTQ | AutoRound | |:--------------:|:----------:|:----------:|:----------:|:----:|:----:| | Intel CPU | ✔ | ✔ | ✔ | ✔ | ✔ | | Intel GPU | ✔ | stay tuned | stay tuned | ✔ | ✔ | > Please refer to [weight-only quantization document](./PT_WeightOnlyQuant.html) for more details. ## Usage For CPU Our motivation is to improve CPU support for weight only quantization. We have extended the `from_pretrained` function so that `quantization_config` can accept [`RtnConfig`](https://github.com/intel/neural-compressor/blob/master/neural_compressor/transformers/utils/quantization_config.py#L243), [`AwqConfig`](https://github.com/intel/neural-compressor/blob/72398b69334d90cdd7664ac12a025cd36695b55c/neural_compressor/transformers/utils/quantization_config.py#L394), [`TeqConfig`](https://github.com/intel/neural-compressor/blob/72398b69334d90cdd7664ac12a025cd36695b55c/neural_compressor/transformers/utils/quantization_config.py#L464), [`GPTQConfig`](https://github.com/intel/neural-compressor/blob/72398b69334d90cdd7664ac12a025cd36695b55c/neural_compressor/transformers/utils/quantization_config.py#L298), [`AutoroundConfig`](https://github.com/intel/neural-compressor/blob/72398b69334d90cdd7664ac12a025cd36695b55c/neural_compressor/transformers/utils/quantization_config.py#L527) to implements conversion on the CPU. ### Usage examples for CPU device quantization and inference with `RtnConfig`, `AwqConfig`, `TeqConfig`, `GPTQConfig`, `AutoRoundConfig` on CPU device. ```python # RTN from neural_compressor.transformers import AutoModelForCausalLM, RtnConfig model_name_or_path = "MODEL_NAME_OR_PATH" woq_config = RtnConfig(bits=4) q_model = AutoModelForCausalLM.from_pretrained( model_name_or_path, quantization_config=woq_config, ) # AWQ from neural_compressor.transformers import AutoModelForCausalLM, AwqConfig model_name_or_path = "MODEL_NAME_OR_PATH" woq_config = AwqConfig(bits=4) q_model = AutoModelForCausalLM.from_pretrained( model_name_or_path, quantization_config=woq_config, ) # TEQ from transformers import AutoTokenizer from neural_compressor.transformers import AutoModelForCausalLM, TeqConfig model_name_or_path = "MODEL_NAME_OR_PATH" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) woq_config = TeqConfig(bits=4, tokenizer=tokenizer) q_model = AutoModelForCausalLM.from_pretrained( model_name_or_path, quantization_config=woq_config, ) # GPTQ from transformers import AutoTokenizer from neural_compressor.transformers import AutoModelForCausalLM, GPTQConfig model_name_or_path = "MODEL_NAME_OR_PATH" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) woq_config = GPTQConfig(bits=4, tokenizer=tokenizer) woq_model = AutoModelForCausalLM.from_pretrained( model_name_or_path, quantization_config=woq_config, ) # AutoRound from transformers import AutoTokenizer from neural_compressor.transformers import AutoModelForCausalLM, AutoRoundConfig model_name_or_path = "MODEL_NAME_OR_PATH" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) woq_config = AutoRoundConfig(bits=4, tokenizer=tokenizer) woq_model = AutoModelForCausalLM.from_pretrained( model_name_or_path, quantization_config=woq_config, ) # inference from transformers import AutoTokenizer prompt = "Once upon a time, a little girl" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"] generate_kwargs = dict(do_sample=False, temperature=0.9, num_beams=4) gen_ids = q_model.generate(input_ids, **generate_kwargs) gen_text = tokenizer.batch_decode(gen_ids, skip_special_tokens=True) print(gen_text) ``` You can also save and load your quantized low bit model by the below code. ```python # quant from neural_compressor.transformers import AutoModelForCausalLM, RtnConfig model_name_or_path = "MODEL_NAME_OR_PATH" woq_config = RtnConfig(bits=4) q_model = AutoModelForCausalLM.from_pretrained( model_name_or_path, quantization_config=woq_config, ) # save quant model saved_dir = "SAVE_DIR" q_model.save_pretrained(saved_dir) # load quant model loaded_model = AutoModelForCausalLM.from_pretrained(saved_dir) ``` ## Usage For Intel GPU Intel® Neural Compressor implement weight-only quantization for Intel GPU,(PVC/ARC/MTL/LNL) with [intel-extension-for-pytorch](https://github.com/intel/intel-extension-for-pytorch). Now 4-bit/8-bit inference with `RtnConfig`, `GPTQConfig`, `AutoRoundConfig` are support on Intel GPU device. We support experimental woq inference on Intel GPU,(PVC/ARC/MTL/LNL) with replacing Linear op in PyTorch. Validated models: meta-llama/Meta-Llama-3-8B, meta/llama-Llama-2-7b-hf, Qwen/Qwen-7B-Chat, microsoft/Phi-3-mini-4k-instruct. Here are the example codes. #### Prepare Dependency Packages 1. Install Oneapi Package The Oneapi DPCPP compiler is required to compile intel-extension-for-pytorch. Please follow [the link](https://www.intel.com/content/www/us/en/developer/articles/guide/installation-guide-for-oneapi-toolkits.html) to install the OneAPI to "/opt/intel folder". 2. Build and Install PyTorch and intel-extension-for-pytorch. Please follow [the link](https://intel.github.io/intel-extension-for-pytorch/index.html#installation). 3. Quantization Model and Inference ```python import intel_extension_for_pytorch as ipex from neural_compressor.transformers import AutoModelForCausalLM from transformers import AutoTokenizer import torch model_name_or_path = "Qwen/Qwen-7B-Chat" # MODEL_NAME_OR_PATH prompt = "Once upon a time, a little girl" input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"] tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) q_model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="xpu", trust_remote_code=True) # optimize the model with ipex, it will improve performance. quantization_config = q_model.quantization_config if hasattr(q_model, "quantization_config") else None q_model = ipex.optimize_transformers( q_model, inplace=True, dtype=torch.float16, quantization_config=quantizaiton_config, device="xpu" ) output = q_model.generate(input_ids, max_new_tokens=100, do_sample=True) print(tokenizer.batch_decode(output, skip_special_tokens=True)) ``` > Note: If your device memory is not enough, please quantize and save the model first, then rerun the example with loading the model as below, If your device memory is enough, skip below instruction, just quantization and inference. 4. Saving and Loading quantized model * First step: Quantize and save model ```python from neural_compressor.transformers import AutoModelForCausalLM, RtnConfig model_name_or_path = "MODEL_NAME_OR_PATH" woq_config = RtnConfig(bits=4) q_model = AutoModelForCausalLM.from_pretrained( model_name_or_path, quantization_config=woq_config, device_map="xpu", trust_remote_code=True, ) # Please note, saving model should be executed before ipex.optimize_transformers function is called. q_model.save_pretrained("saved_dir") ``` * Second step: Load model and inference(In order to reduce memory usage, you may need to end the quantize process and rerun the script to load the model.) ```python # Load model loaded_model = AutoModelForCausalLM.from_pretrained("saved_dir", trust_remote_code=True) # Before executed the loaded model, you can call ipex.optimize_transformers function. quantization_config = q_model.quantization_config if hasattr(q_model, "quantization_config") else None loaded_model = ipex.optimize_transformers( loaded_model, inplace=True, dtype=torch.float16, quantization_config=quantization_config, device="xpu" ) # inference from transformers import AutoTokenizer prompt = "Once upon a time, a little girl" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"] generate_kwargs = dict(do_sample=False, temperature=0.9, num_beams=4) gen_ids = loaded_model.generate(input_ids, **generate_kwargs) gen_text = tokenizer.batch_decode(gen_ids, skip_special_tokens=True) print(gen_text) ``` 5. You can directly use [example script](https://github.com/intel/neural-compressor/blob/master/examples/3.x_api/pytorch/nlp/huggingface_models/language-modeling/quantization/transformers/weight_only/text-generation/run_generation_gpu_woq.py) ```bash python run_generation_gpu_woq.py --woq --benchmark --model save_dir ``` >Note: > * Saving quantized model should be executed before the optimize_transformers function is called. > * The optimize_transformers function is designed to optimize transformer-based models within frontend Python modules, with a particular focus on Large Language Models (LLMs). It provides optimizations for both model-wise and content-generation-wise. The detail of `optimize_transformers`, please refer to [the link](https://github.com/intel/intel-extension-for-pytorch/blob/xpu-main/docs/tutorials/llm/llm_optimize_transformers.html). >* The quantization process is performed on the CPU accelerator by default. Users can override this setting by specifying the environment variable `INC_TARGET_DEVICE`. Usage on bash: ```export INC_TARGET_DEVICE=xpu```. >* For Linux systems, users need to configure the environment variables appropriately to achieve optimal performance. For example, set the OMP_NUM_THREADS explicitly. For processors with hybrid architecture (including both P-cores and E-cores), it is recommended to bind tasks to all P-cores using taskset. ## Examples Users can also refer to [examples](https://github.com/intel/neural-compressor/blob/master/examples/3.x_api/pytorch/nlp/huggingface_models/language-modeling/quantization/transformers/weight_only/text-generation) on how to quantize a model with transformers-like api.