neural_compressor.torch.quantization.quantize ============================================= .. py:module:: neural_compressor.torch.quantization.quantize .. autoapi-nested-parse:: Intel Neural Compressor Pytorch quantization base API. Functions --------- .. autoapisummary:: neural_compressor.torch.quantization.quantize.need_apply neural_compressor.torch.quantization.quantize.quantize neural_compressor.torch.quantization.quantize.prepare neural_compressor.torch.quantization.quantize.convert neural_compressor.torch.quantization.quantize.finalize_calibration Module Contents --------------- .. py:function:: need_apply(configs_mapping: Dict[Tuple[str, callable], neural_compressor.common.base_config.BaseConfig], algo_name) Check whether to apply this algorithm according to configs_mapping. :param configs_mapping: configs mapping :type configs_mapping: Dict[Tuple[str, callable], BaseConfig] :param algo_name: algo name :type algo_name: str :returns: True or False. :rtype: Bool .. py:function:: quantize(model: torch.nn.Module, quant_config: neural_compressor.common.base_config.BaseConfig, run_fn: Callable = None, run_args: Any = None, inplace: bool = True, example_inputs: Any = None) -> torch.nn.Module The main entry to quantize model with static mode. :param model: a float model to be quantized. :param quant_config: a quantization configuration. :param run_fn: a calibration function for calibrating the model. Defaults to None. :param run_args: positional arguments for `run_fn`. Defaults to None. :param example_inputs: used to trace torch model. :returns: The quantized model. .. py:function:: prepare(model: torch.nn.Module, quant_config: neural_compressor.common.base_config.BaseConfig, inplace: bool = True, example_inputs: Any = None) Prepare the model for calibration. Insert observers into the model so that it can monitor the input and output tensors during calibration. :param model: origin model :type model: torch.nn.Module :param quant_config: path to quantization config :type quant_config: BaseConfig :param inplace: It will change the given model in-place if True. :type inplace: bool, optional :param example_inputs: used to trace torch model. :type example_inputs: tensor/tuple/dict, optional :returns: prepared and calibrated module. .. py:function:: convert(model: torch.nn.Module, quant_config: neural_compressor.common.base_config.BaseConfig = None, inplace: bool = True) Convert the prepared model to a quantized model. :param model: the prepared model :type model: torch.nn.Module :param quant_config: path to quantization config :type quant_config: BaseConfig, optional :param inplace: It will change the given model in-place if True. :type inplace: bool, optional :returns: The quantized model. .. py:function:: finalize_calibration(model) Generate and save calibration info.