neural_compressor.torch.quantization.autotune ============================================= .. py:module:: neural_compressor.torch.quantization.autotune .. autoapi-nested-parse:: Intel Neural Compressor Pytorch quantization AutoTune API. Functions --------- .. autoapisummary:: neural_compressor.torch.quantization.autotune.get_rtn_double_quant_config_set neural_compressor.torch.quantization.autotune.get_all_config_set neural_compressor.torch.quantization.autotune.autotune Module Contents --------------- .. py:function:: get_rtn_double_quant_config_set() -> List[neural_compressor.torch.quantization.config.RTNConfig] Generate RTN double quant config set. :returns: a set of quant config :rtype: List[RTNConfig] .. py:function:: get_all_config_set() -> Union[neural_compressor.common.base_config.BaseConfig, List[neural_compressor.common.base_config.BaseConfig]] Generate all quant config set. :returns: a set of quant config :rtype: Union[BaseConfig, List[BaseConfig]] .. py:function:: autotune(model: torch.nn.Module, tune_config: neural_compressor.common.base_tuning.TuningConfig, eval_fn: Callable, eval_args=None, run_fn=None, run_args=None, example_inputs=None) The main entry of auto-tune. :param model: _description_ :type model: torch.nn.Module :param tune_config: _description_ :type tune_config: TuningConfig :param eval_fn: for evaluation of quantized models. :type eval_fn: Callable :param eval_args: arguments used by eval_fn. Defaults to None. :type eval_args: tuple, optional :param run_fn: for calibration to quantize model. Defaults to None. :type run_fn: Callable, optional :param run_args: arguments used by run_fn. Defaults to None. :type run_args: tuple, optional :param example_inputs: used to trace torch model. Defaults to None. :type example_inputs: tensor/tuple/dict, optional :returns: The quantized model.