:py:mod:`neural_compressor.utils.load_huggingface` ================================================== .. py:module:: neural_compressor.utils.load_huggingface .. autoapi-nested-parse:: Huggingface Loader: provides access to Huggingface pretrained models. Module Contents --------------- Classes ~~~~~~~ .. autoapisummary:: neural_compressor.utils.load_huggingface.OptimizedModel Functions ~~~~~~~~~ .. autoapisummary:: neural_compressor.utils.load_huggingface.save_for_huggingface_upstream .. py:class:: OptimizedModel(*args, **kwargs) The class provides a method from_pretrained to access Huggingface models. .. py:method:: from_pretrained(model_name_or_path: str, **kwargs) -> torch.nn.Module :classmethod: Instantiate a quantized pytorch model from a given Intel Neural Compressor (INC) configuration file. :param model_name_or_path: Repository name in the Hugging Face Hub or path to a local directory hosting the model. :type model_name_or_path: :obj:`str` :param cache_dir: Path to a directory in which a downloaded configuration should be cached if the standard cache should not be used. :type cache_dir: :obj:`str`, `optional` :param force_download: Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. :type force_download: :obj:`bool`, `optional`, defaults to :obj:`False` :param resume_download: Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. :type resume_download: :obj:`bool`, `optional`, defaults to :obj:`False` :param revision: The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any identifier allowed by git. :type revision: :obj:`str`, `optional` :returns: Quantized model. :rtype: q_model .. py:function:: save_for_huggingface_upstream(model, tokenizer, output_dir) Save the model and tokenizer in the output directory.