:py:mod:`neural_compressor.experimental.common` =============================================== .. py:module:: neural_compressor.experimental.common .. autoapi-nested-parse:: IntelĀ® Neural Compressor: An open-source Python library supporting common model. Submodules ---------- .. toctree:: :titlesonly: :maxdepth: 1 criterion/index.rst dataloader/index.rst metric/index.rst model/index.rst optimizer/index.rst postprocess/index.rst torch_utils/index.rst Package Contents ---------------- Classes ~~~~~~~ .. autoapisummary:: neural_compressor.experimental.common.Model neural_compressor.experimental.common.DataLoader neural_compressor.experimental.common.Postprocess neural_compressor.experimental.common.Metric Functions ~~~~~~~~~ .. autoapisummary:: neural_compressor.experimental.common._generate_common_dataloader .. py:class:: Model Bases: :py:obj:`object` A wrapper of the information needed to construct a Model. .. py:class:: DataLoader(dataset, batch_size=1, collate_fn=None, last_batch='rollover', sampler=None, batch_sampler=None, num_workers=0, pin_memory=False, shuffle=False, distributed=False) Bases: :py:obj:`object` A wrapper of the information needed to construct a dataloader. This class can't yield batched data and only in this Quantization/Benchmark object's setter method a 'real' calib_dataloader will be created, the reason is we have to know the framework info and only after the Quantization/Benchmark object created then framework infomation can be known. Future we will support creating iterable dataloader from neural_compressor.experimental.common.DataLoader .. py:class:: Postprocess(postprocess_cls, name='user_postprocess', **kwargs) Bases: :py:obj:`object` Just collect the infos to construct a Postprocess. .. py:class:: Metric(metric_cls, name='user_metric', **kwargs) Bases: :py:obj:`object` A wrapper of the information needed to construct a Metric. The metric class should take the outputs of the model as the metric's inputs, neural_compressor built-in metric always take (predictions, labels) as inputs, it's recommended to design metric_cls to take (predictions, labels) as inputs.