Model Conversion ================== ## Introduction Model conversion is used to convert different TensorFlow model format to another. Now it supports QAT(quantization aware training) model to default(quantized) model. In the future, we will add tflite to default model support. ## How to use it See the following example which demonstrate model conversion API usage. ```python from neural_compressor.experimental import ModelConversion, common conversion = ModelConversion() conversion.source = 'QAT' conversion.destination = 'default' conversion.model = '/path/to/trained/saved_model' q_model = conversion() q_model.save('/path/to/quantized/saved_model') ``` After this conversion is done, user could measure the accuracy or performance on quantized model. ```python from neural_compressor.experimental import Benchmark, common evaluator = Benchmark('/path/to/yaml') evaluator.model = '/path/to/quantized/saved_model' evaluator.b_dataloader = ... # create benchmark dataloader like examples/tensorflow/qat/benchmark.py evaluator('accuracy') ```