clang  19.0.0git
sm4intrin.h
Go to the documentation of this file.
1 /*===--------------- sm4intrin.h - SM4 intrinsics -----------------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 
10 #ifndef __IMMINTRIN_H
11 #error "Never use <sm4intrin.h> directly; include <immintrin.h> instead."
12 #endif // __IMMINTRIN_H
13 
14 #ifndef __SM4INTRIN_H
15 #define __SM4INTRIN_H
16 
17 /// This intrinsic performs four rounds of SM4 key expansion. The intrinsic
18 /// operates on independent 128-bit lanes. The calculated results are
19 /// stored in \a dst.
20 /// \headerfile <immintrin.h>
21 ///
22 /// \code
23 /// __m128i _mm_sm4key4_epi32(__m128i __A, __m128i __B)
24 /// \endcode
25 ///
26 /// This intrinsic corresponds to the \c VSM4KEY4 instruction.
27 ///
28 /// \param __A
29 /// A 128-bit vector of [4 x int].
30 /// \param __B
31 /// A 128-bit vector of [4 x int].
32 /// \returns
33 /// A 128-bit vector of [4 x int].
34 ///
35 /// \code{.operation}
36 /// DEFINE ROL32(dword, n) {
37 /// count := n % 32
38 /// dest := (dword << count) | (dword >> (32-count))
39 /// RETURN dest
40 /// }
41 /// DEFINE SBOX_BYTE(dword, i) {
42 /// RETURN sbox[dword.byte[i]]
43 /// }
44 /// DEFINE lower_t(dword) {
45 /// tmp.byte[0] := SBOX_BYTE(dword, 0)
46 /// tmp.byte[1] := SBOX_BYTE(dword, 1)
47 /// tmp.byte[2] := SBOX_BYTE(dword, 2)
48 /// tmp.byte[3] := SBOX_BYTE(dword, 3)
49 /// RETURN tmp
50 /// }
51 /// DEFINE L_KEY(dword) {
52 /// RETURN dword ^ ROL32(dword, 13) ^ ROL32(dword, 23)
53 /// }
54 /// DEFINE T_KEY(dword) {
55 /// RETURN L_KEY(lower_t(dword))
56 /// }
57 /// DEFINE F_KEY(X0, X1, X2, X3, round_key) {
58 /// RETURN X0 ^ T_KEY(X1 ^ X2 ^ X3 ^ round_key)
59 /// }
60 /// FOR i:= 0 to 0
61 /// P[0] := __B.xmm[i].dword[0]
62 /// P[1] := __B.xmm[i].dword[1]
63 /// P[2] := __B.xmm[i].dword[2]
64 /// P[3] := __B.xmm[i].dword[3]
65 /// C[0] := F_KEY(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
66 /// C[1] := F_KEY(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
67 /// C[2] := F_KEY(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
68 /// C[3] := F_KEY(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
69 /// DEST.xmm[i].dword[0] := C[0]
70 /// DEST.xmm[i].dword[1] := C[1]
71 /// DEST.xmm[i].dword[2] := C[2]
72 /// DEST.xmm[i].dword[3] := C[3]
73 /// ENDFOR
74 /// DEST[MAX:128] := 0
75 /// \endcode
76 #define _mm_sm4key4_epi32(A, B) \
77  (__m128i) __builtin_ia32_vsm4key4128((__v4su)A, (__v4su)B)
78 
79 /// This intrinsic performs four rounds of SM4 key expansion. The intrinsic
80 /// operates on independent 128-bit lanes. The calculated results are
81 /// stored in \a dst.
82 /// \headerfile <immintrin.h>
83 ///
84 /// \code
85 /// __m256i _mm256_sm4key4_epi32(__m256i __A, __m256i __B)
86 /// \endcode
87 ///
88 /// This intrinsic corresponds to the \c VSM4KEY4 instruction.
89 ///
90 /// \param __A
91 /// A 256-bit vector of [8 x int].
92 /// \param __B
93 /// A 256-bit vector of [8 x int].
94 /// \returns
95 /// A 256-bit vector of [8 x int].
96 ///
97 /// \code{.operation}
98 /// DEFINE ROL32(dword, n) {
99 /// count := n % 32
100 /// dest := (dword << count) | (dword >> (32-count))
101 /// RETURN dest
102 /// }
103 /// DEFINE SBOX_BYTE(dword, i) {
104 /// RETURN sbox[dword.byte[i]]
105 /// }
106 /// DEFINE lower_t(dword) {
107 /// tmp.byte[0] := SBOX_BYTE(dword, 0)
108 /// tmp.byte[1] := SBOX_BYTE(dword, 1)
109 /// tmp.byte[2] := SBOX_BYTE(dword, 2)
110 /// tmp.byte[3] := SBOX_BYTE(dword, 3)
111 /// RETURN tmp
112 /// }
113 /// DEFINE L_KEY(dword) {
114 /// RETURN dword ^ ROL32(dword, 13) ^ ROL32(dword, 23)
115 /// }
116 /// DEFINE T_KEY(dword) {
117 /// RETURN L_KEY(lower_t(dword))
118 /// }
119 /// DEFINE F_KEY(X0, X1, X2, X3, round_key) {
120 /// RETURN X0 ^ T_KEY(X1 ^ X2 ^ X3 ^ round_key)
121 /// }
122 /// FOR i:= 0 to 1
123 /// P[0] := __B.xmm[i].dword[0]
124 /// P[1] := __B.xmm[i].dword[1]
125 /// P[2] := __B.xmm[i].dword[2]
126 /// P[3] := __B.xmm[i].dword[3]
127 /// C[0] := F_KEY(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
128 /// C[1] := F_KEY(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
129 /// C[2] := F_KEY(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
130 /// C[3] := F_KEY(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
131 /// DEST.xmm[i].dword[0] := C[0]
132 /// DEST.xmm[i].dword[1] := C[1]
133 /// DEST.xmm[i].dword[2] := C[2]
134 /// DEST.xmm[i].dword[3] := C[3]
135 /// ENDFOR
136 /// DEST[MAX:256] := 0
137 /// \endcode
138 #define _mm256_sm4key4_epi32(A, B) \
139  (__m256i) __builtin_ia32_vsm4key4256((__v8su)A, (__v8su)B)
140 
141 /// This intrinisc performs four rounds of SM4 encryption. The intrinisc
142 /// operates on independent 128-bit lanes. The calculated results are
143 /// stored in \a dst.
144 /// \headerfile <immintrin.h>
145 ///
146 /// \code
147 /// __m128i _mm_sm4rnds4_epi32(__m128i __A, __m128i __B)
148 /// \endcode
149 ///
150 /// This intrinsic corresponds to the \c VSM4RNDS4 instruction.
151 ///
152 /// \param __A
153 /// A 128-bit vector of [4 x int].
154 /// \param __B
155 /// A 128-bit vector of [4 x int].
156 /// \returns
157 /// A 128-bit vector of [4 x int].
158 ///
159 /// \code{.operation}
160 /// DEFINE ROL32(dword, n) {
161 /// count := n % 32
162 /// dest := (dword << count) | (dword >> (32-count))
163 /// RETURN dest
164 /// }
165 /// DEFINE lower_t(dword) {
166 /// tmp.byte[0] := SBOX_BYTE(dword, 0)
167 /// tmp.byte[1] := SBOX_BYTE(dword, 1)
168 /// tmp.byte[2] := SBOX_BYTE(dword, 2)
169 /// tmp.byte[3] := SBOX_BYTE(dword, 3)
170 /// RETURN tmp
171 /// }
172 /// DEFINE L_RND(dword) {
173 /// tmp := dword
174 /// tmp := tmp ^ ROL32(dword, 2)
175 /// tmp := tmp ^ ROL32(dword, 10)
176 /// tmp := tmp ^ ROL32(dword, 18)
177 /// tmp := tmp ^ ROL32(dword, 24)
178 /// RETURN tmp
179 /// }
180 /// DEFINE T_RND(dword) {
181 /// RETURN L_RND(lower_t(dword))
182 /// }
183 /// DEFINE F_RND(X0, X1, X2, X3, round_key) {
184 /// RETURN X0 ^ T_RND(X1 ^ X2 ^ X3 ^ round_key)
185 /// }
186 /// FOR i:= 0 to 0
187 /// P[0] := __B.xmm[i].dword[0]
188 /// P[1] := __B.xmm[i].dword[1]
189 /// P[2] := __B.xmm[i].dword[2]
190 /// P[3] := __B.xmm[i].dword[3]
191 /// C[0] := F_RND(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
192 /// C[1] := F_RND(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
193 /// C[2] := F_RND(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
194 /// C[3] := F_RND(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
195 /// DEST.xmm[i].dword[0] := C[0]
196 /// DEST.xmm[i].dword[1] := C[1]
197 /// DEST.xmm[i].dword[2] := C[2]
198 /// DEST.xmm[i].dword[3] := C[3]
199 /// ENDFOR
200 /// DEST[MAX:128] := 0
201 /// \endcode
202 #define _mm_sm4rnds4_epi32(A, B) \
203  (__m128i) __builtin_ia32_vsm4rnds4128((__v4su)A, (__v4su)B)
204 
205 /// This intrinisc performs four rounds of SM4 encryption. The intrinisc
206 /// operates on independent 128-bit lanes. The calculated results are
207 /// stored in \a dst.
208 /// \headerfile <immintrin.h>
209 ///
210 /// \code
211 /// __m256i _mm256_sm4rnds4_epi32(__m256i __A, __m256i __B)
212 /// \endcode
213 ///
214 /// This intrinsic corresponds to the \c VSM4RNDS4 instruction.
215 ///
216 /// \param __A
217 /// A 256-bit vector of [8 x int].
218 /// \param __B
219 /// A 256-bit vector of [8 x int].
220 /// \returns
221 /// A 256-bit vector of [8 x int].
222 ///
223 /// \code{.operation}
224 /// DEFINE ROL32(dword, n) {
225 /// count := n % 32
226 /// dest := (dword << count) | (dword >> (32-count))
227 /// RETURN dest
228 /// }
229 /// DEFINE lower_t(dword) {
230 /// tmp.byte[0] := SBOX_BYTE(dword, 0)
231 /// tmp.byte[1] := SBOX_BYTE(dword, 1)
232 /// tmp.byte[2] := SBOX_BYTE(dword, 2)
233 /// tmp.byte[3] := SBOX_BYTE(dword, 3)
234 /// RETURN tmp
235 /// }
236 /// DEFINE L_RND(dword) {
237 /// tmp := dword
238 /// tmp := tmp ^ ROL32(dword, 2)
239 /// tmp := tmp ^ ROL32(dword, 10)
240 /// tmp := tmp ^ ROL32(dword, 18)
241 /// tmp := tmp ^ ROL32(dword, 24)
242 /// RETURN tmp
243 /// }
244 /// DEFINE T_RND(dword) {
245 /// RETURN L_RND(lower_t(dword))
246 /// }
247 /// DEFINE F_RND(X0, X1, X2, X3, round_key) {
248 /// RETURN X0 ^ T_RND(X1 ^ X2 ^ X3 ^ round_key)
249 /// }
250 /// FOR i:= 0 to 0
251 /// P[0] := __B.xmm[i].dword[0]
252 /// P[1] := __B.xmm[i].dword[1]
253 /// P[2] := __B.xmm[i].dword[2]
254 /// P[3] := __B.xmm[i].dword[3]
255 /// C[0] := F_RND(P[0], P[1], P[2], P[3], __A.xmm[i].dword[0])
256 /// C[1] := F_RND(P[1], P[2], P[3], C[0], __A.xmm[i].dword[1])
257 /// C[2] := F_RND(P[2], P[3], C[0], C[1], __A.xmm[i].dword[2])
258 /// C[3] := F_RND(P[3], C[0], C[1], C[2], __A.xmm[i].dword[3])
259 /// DEST.xmm[i].dword[0] := C[0]
260 /// DEST.xmm[i].dword[1] := C[1]
261 /// DEST.xmm[i].dword[2] := C[2]
262 /// DEST.xmm[i].dword[3] := C[3]
263 /// ENDFOR
264 /// DEST[MAX:256] := 0
265 /// \endcode
266 #define _mm256_sm4rnds4_epi32(A, B) \
267  (__m256i) __builtin_ia32_vsm4rnds4256((__v8su)A, (__v8su)B)
268 
269 #endif // __SM4INTRIN_H