# Quick Start The following instructions assume you have installed the Intel® Extension for PyTorch\*. For installation instructions, refer to [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu&version=v2.1.30%2bxpu). To start using the Intel® Extension for PyTorch\* in your code, you need to make the following changes: 1. Import the extension with `import intel_extension_for_pytorch as ipex`. 2. Move model and data to GPU with `to('xpu')`, if you want to run on GPU. 3. Invoke the `optimize()` function to apply optimizations. 3. For TorchScript, invoke `torch.jit.trace()` and `torch.jit.freeze()`. **Important:** It is highly recommended to `import intel_extension_for_pytorch` right after `import torch`, prior to importing other packages. The example below demostrates how to use the Intel® Extension for PyTorch\*: ```python import torch import intel_extension_for_pytorch as ipex model = Model() model.eval() # Set the model to evaluation mode for inference, as required by ipex.optimize() function. data = ... dtype=torch.float32 # torch.bfloat16, torch.float16 (float16 only works on GPU) ##### Run on GPU ###### model = model.to('xpu') data = data.to('xpu') ####################### model = ipex.optimize(model, dtype=dtype) ########## FP32 ############ with torch.no_grad(): ####### BF16 on CPU ######## with torch.no_grad(), torch.cpu.amp.autocast(): ##### BF16/FP16 on GPU ##### with torch.no_grad(), torch.xpu.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False): ############################ ###### Torchscript ####### model = torch.jit.trace(model, data) model = torch.jit.freeze(model) ###### Torchscript ####### model(data) ``` More examples, including training and usage of low precision data types are available at [Examples](./examples.md). ## Execution There are some environment variables in runtime that can be used to configure executions on GPU. Please check [Advanced Configuration](./features/advanced_configuration.html#runtime-configuration) for more detailed information.