Intel® Extension for PyTorch* Large Language Model (LLM) Feature Get Started For Llama 3 models
Intel® Extension for PyTorch* provides dedicated optimization for running Llama 3 models on Intel® Core™ Ultra Processors with Intel® Arc™ Graphics, including weight-only quantization (WOQ), Rotary Position Embedding fusion, etc. You are welcomed to have a try with these optimizations on Intel® Core™ Ultra Processors with Intel® Arc™ Graphics. This document shows how to run Llama 3 with a preview version of Intel® Extension for PyTorch*.
1. Environment Setup
1.1 Conda-based environment setup with pre-built wheels on Windows 11
# Install Visual Studio 2022
https://visualstudio.microsoft.com/zh-hans/thank-you-downloading-visual-studio/?sku=Community&channel=Release&version=VS2022&source=VSLandingPage&cid=2030&passive=false
# Install Intel® oneAPI Base Toolkit 2024.1
https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html?operatingsystem=window
# Install Intel® Core™ Ultra Processors with Intel® Arc™ Graphics driver
https://www.intel.com/content/www/us/en/download/785597/intel-arc-iris-xe-graphics-windows.html
# Create a conda environment (pre-built wheel only available with python=3.9)
conda create -n llm python=3.9 -y
conda activate llm
conda install libuv
# Set environment variable
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
# Install PyTorch*
pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/xpu/torch-2.1.0a0%2Bgit04048c2-cp39-cp39-win_amd64.whl
# Install Intel® Extension for PyTorch*
pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/xpu/intel_extension_for_pytorch-2.1.30%2Bgit6661060-cp39-cp39-win_amd64.whl
# Install Intel® Extension for Transformers*
git clone https://github.com/intel/intel-extension-for-transformers.git intel-extension-for-transformers -b xpu_lm_head
cd intel-extension-for-transformers
pip install -v .
# Install dependencies
pip install transformers==4.35
pip install huggingface_hub==0.22
pip install lm_eval==0.4.2 --no-deps
pip install accelerate datasets diffusers
2. How To Run Llama 3
Intel® Extension for PyTorch* provides a single script run_generation_gpu_woq_for_llama.py
to facilitate running generation tasks as below:
git clone https://github.com/intel/intel-extension-for-pytorch.git
cd intel-extension-for-pytorch
git checkout dev/llama-int4
cd examples/gpu/inference/python/llm
Key args of run_generation_gpu_woq_for_llama.py | Notes |
---|---|
model id | "--model" or "-m" to specify the |
benchmark | "--benchmark" to specify whether to generate sentences using model.generate |
accuracy | "--accuracy" to specify whether to use the dataset to detect accuracy |
output tokens | default: 32, use "--max-new-tokens" to choose any other size |
token latency | enable "--profile_token_latency" to print out the first or next token latency |
generation iterations | use "--iters" and "--num-warmup" to control the repeated iterations of generation, default: 10-iter/3-warmup |
2.1 Usage of running Llama 3 models
2.1.1 INT4 WOQ Model
LLM quantization procedure is heavily constrained by client memory and computation capabilities. If you plan to create an INT4 WOQ model by your own, please use a powerful machine, for example, Intel® Xeon® Server, then execute the following steps. Otherwise, it is highly recommended waiting for INT4 model available in HuggingFace Model Hub.
Environment installation:
cd ${YourWorkSpace}
git clone https://github.com/intel/neural-compressor.git neural-compressor
cd neural-compressor
git checkout xpu_export
python setup.py develop
cd ..
git clone https://github.com/intel/intel-extension-for-transformers.git intel-extension-for-transformers
cd intel-extension-for-transformers
git checkout xpu_int4
python setup.py develop
cd ..
git clone https://github.com/intel/auto-round.git auto-round
cd auto-round
git checkout lm-head-quant
python setup.py develop
cd ..
pip install schema==0.7.5
Command to quantize:
cd ${YourWorkSpace}/intel-extension-for-transformers/examples/huggingface/pytorch/text-generation/quantization
python run_generation_gpu_woq.py \
--model $model_path \
--woq --woq_algo AutoRound \
--use_quant_input \
--calib_iters 200 \
--lr 5e-3 \
--minmax_lr 1e-2 \
--output_dir llama3_all_int4 \
--nsamples 512
The int4 model is saved in folder ~/llama3_all_int4.
2.1.2 Measure Llama 3 WOQ INT4 Performance on Windows 11
Command:
unset LLM_ACC_TEST
python run_generation_gpu_woq_for_llama.py --model ${PATH/TO/MODEL} --benchmark --profile_token_latency
*Note:* replace ${PATH/TO/MODEL} with actual Llama 3 INT4 model local path
2.1.3 Validate Llama 3 WOQ INT4 Accuracy on Windows 11
Command:
set LLM_ACC_TEST=1
python run_generation_gpu_woq_for_llama.py --model ${PATH/TO/MODEL} --accuracy --task "openbookqa"
python run_generation_gpu_woq_for_llama.py --model ${PATH/TO/MODEL} --accuracy --task "piqa"
python run_generation_gpu_woq_for_llama.py --model ${PATH/TO/MODEL} --accuracy --task "rte"
python run_generation_gpu_woq_for_llama.py --model ${PATH/TO/MODEL} --accuracy --task "truthfulqa_mc1"
*Note:* replace ${PATH/TO/MODEL} with actual Llama 3 INT4 model local path
*Note:* you may validate the Llama 3 WOQ INT4 accuracy using any task listed above, such as the first command with "openbookqa" only,
or validate all of them, depending on your needs. Please expect more time needed for executing more than one task.
Miscellaneous Tips
Intel® Extension for PyTorch* also provides dedicated optimization for many other Large Language Models (LLM), which covers a set of data types for supporting various scenarios. For more details, please check Large Language Models (LLM) Optimizations Overview. To replicate Llama 3 performance numbers on Intel ARC A770, please take advantage of IPEX-LLM.