Examples ======== ## Training ### Single-instance Training #### Code Changes Highlight There are only a few lines code change required to use Intel® Extension for PyTorch\* on training. Recommended code changes involve: 1. `torch.channels_last` is recommended to be applied to both of the model object and data to raise CPU resource usage efficiency. 2. `ipex.optimize` function applies optimizations against the model object, as well as an optimizer object. ``` ... import torch import intel_extension_for_pytorch as ipex ... model = Model() model = model.to(memory_format=torch.channels_last) criterion = ... optimizer = ... model.train() # For Float32 model, optimizer = ipex.optimize(model, optimizer=optimizer) # For BFloat16 model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16) ... # Setting memory_format to torch.channels_last could improve performance with 4D input data. This is optional. data = data.to(memory_format=torch.channels_last) optimizer.zero_grad() output = model(data) ... ``` #### Complete - Float32 ``` import torch import torchvision import intel_extension_for_pytorch as ipex LR = 0.001 DOWNLOAD = True DATA = 'datasets/cifar10/' transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = torchvision.datasets.CIFAR10( root=DATA, train=True, transform=transform, download=DOWNLOAD, ) train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=128 ) model = torchvision.models.resnet50() model = model.to(memory_format=torch.channels_last) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9) model.train() model, optimizer = ipex.optimize(model, optimizer=optimizer) for batch_idx, (data, target) in enumerate(train_loader): # Setting memory_format to torch.channels_last could improve performance with 4D input data. This is optional. data = data.to(memory_format=torch.channels_last) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() print(batch_idx) torch.save({ 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), }, 'checkpoint.pth') ``` #### Complete - BFloat16 ``` import torch import torchvision import intel_extension_for_pytorch as ipex LR = 0.001 DOWNLOAD = True DATA = 'datasets/cifar10/' transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = torchvision.datasets.CIFAR10( root=DATA, train=True, transform=transform, download=DOWNLOAD, ) train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=128 ) model = torchvision.models.resnet50() model = model.to(memory_format=torch.channels_last) criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9) model.train() model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16) for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() with torch.cpu.amp.autocast(): # Setting memory_format to torch.channels_last could improve performance with 4D input data. This is optional. data = data.to(memory_format=torch.channels_last) output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() print(batch_idx) torch.save({ 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), }, 'checkpoint.pth') ``` ### Distributed Training Distributed training with PyTorch DDP is accelerated by oneAPI Collective Communications Library Bindings for Pytorch\* (oneCCL Bindings for Pytorch\*). The extension supports FP32 and BF16 data types. More detailed information and examples are available at its [Github repo](https://github.com/intel/torch-ccl). **Note:** When performing distributed training with BF16 data type, please use oneCCL Bindings for Pytorch\*. Due to a PyTorch limitation, distributed training with BF16 data type with Intel® Extension for PyTorch\* is not supported. ``` import os import torch import torch.distributed as dist import torchvision import torch_ccl import intel_extension_for_pytorch as ipex LR = 0.001 DOWNLOAD = True DATA = 'datasets/cifar10/' transform = torchvision.transforms.Compose([ torchvision.transforms.Resize((224, 224)), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) train_dataset = torchvision.datasets.CIFAR10( root=DATA, train=True, transform=transform, download=DOWNLOAD, ) train_loader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=128 ) os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29500' os.environ['RANK'] = os.environ.get('PMI_RANK', 0) os.environ['WORLD_SIZE'] = os.environ.get('PMI_SIZE', 1) dist.init_process_group( backend='ccl', init_method='env://' ) model = torchvision.models.resnet50() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9) model.train() model, optimizer = ipex.optimize(model, optimizer=optimizer) model = torch.nn.parallel.DistributedDataParallel(model) for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() # Setting memory_format to torch.channels_last could improve performance with 4D input data. This is optional. data = data.to(memory_format=torch.channels_last) output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() print('batch_id: {}'.format(batch_idx)) torch.save({ 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), }, 'checkpoint.pth') ``` ## Inference Channels last is a memory layout format that is more friendly to Intel Architecture. It is recommended for users to utilize this memory layout format for computer vision workloads. It is as simple as invoking `to(memory_format=torch.channels_last)` function against the model object and input data. Moreover, `optimize` function of Intel® Extension for PyTorch\* applies optimizations to the model, and could bring performance boosts. For both computer vision workloads and NLP workloads, it is recommended to apply the `optimize` function against the model object. ### Float32 #### Imperative Mode ##### Resnet50 ``` import torch import torchvision.models as models model = models.resnet50(pretrained=True) model.eval() data = torch.rand(1, 3, 224, 224) model = model.to(memory_format=torch.channels_last) data = data.to(memory_format=torch.channels_last) #################### code changes #################### import intel_extension_for_pytorch as ipex model = ipex.optimize(model) ###################################################### with torch.no_grad(): model(data) ``` ##### BERT ``` import torch from transformers import BertModel model = BertModel.from_pretrained(args.model_name) model.eval() vocab_size = model.config.vocab_size batch_size = 1 seq_length = 512 data = torch.randint(vocab_size, size=[batch_size, seq_length]) #################### code changes #################### import intel_extension_for_pytorch as ipex model = ipex.optimize(model) ###################################################### with torch.no_grad(): model(data) ``` #### TorchScript Mode It is highly recommended for users to take advantage of Intel® Extension for PyTorch\* with [TorchScript](https://pytorch.org/docs/stable/jit.html) for further optimizations. ##### Resnet50 ``` import torch import torchvision.models as models model = models.resnet50(pretrained=True) model.eval() data = torch.rand(1, 3, 224, 224) model = model.to(memory_format=torch.channels_last) data = data.to(memory_format=torch.channels_last) #################### code changes #################### import intel_extension_for_pytorch as ipex model = ipex.optimize(model) ###################################################### with torch.no_grad(): d = torch.rand(1, 3, 224, 224) model = torch.jit.trace(model, d) model = torch.jit.freeze(model) model(data) ``` ##### BERT ``` import torch from transformers import BertModel model = BertModel.from_pretrained(args.model_name) model.eval() vocab_size = model.config.vocab_size batch_size = 1 seq_length = 512 data = torch.randint(vocab_size, size=[batch_size, seq_length]) #################### code changes #################### import intel_extension_for_pytorch as ipex model = ipex.optimize(model) ###################################################### with torch.no_grad(): d = torch.randint(vocab_size, size=[batch_size, seq_length]) model = torch.jit.trace(model, (d,), check_trace=False, strict=False) model = torch.jit.freeze(model) model(data) ``` ### BFloat16 Similar to running with FP32, the `optimize` function also works for BFloat16 data type. The only difference is setting `dtype` parameter to `torch.bfloat16`. Auto Mixed Precision (AMP) is recommended to be working with BFloat16 data type. #### Imperative Mode ##### Resnet50 ``` import torch import torchvision.models as models model = models.resnet50(pretrained=True) model.eval() data = torch.rand(1, 3, 224, 224) model = model.to(memory_format=torch.channels_last) data = data.to(memory_format=torch.channels_last) #################### code changes #################### import intel_extension_for_pytorch as ipex model = ipex.optimize(model, dtype=torch.bfloat16) ###################################################### with torch.no_grad(): with torch.cpu.amp.autocast(): model(data) ``` ##### BERT ``` import torch from transformers import BertModel model = BertModel.from_pretrained(args.model_name) model.eval() vocab_size = model.config.vocab_size batch_size = 1 seq_length = 512 data = torch.randint(vocab_size, size=[batch_size, seq_length]) #################### code changes #################### import intel_extension_for_pytorch as ipex model = ipex.optimize(model, dtype=torch.bfloat16) ###################################################### with torch.no_grad(): with torch.cpu.amp.autocast(): model(data) ``` #### TorchScript Mode It is highly recommended for users to take advantage of Intel® Extension for PyTorch\* with [TorchScript](https://pytorch.org/docs/stable/jit.html) for further optimizations. ##### Resnet50 ``` import torch import torchvision.models as models model = models.resnet50(pretrained=True) model.eval() data = torch.rand(1, 3, 224, 224) model = model.to(memory_format=torch.channels_last) data = data.to(memory_format=torch.channels_last) #################### code changes #################### import intel_extension_for_pytorch as ipex model = ipex.optimize(model, dtype=torch.bfloat16) ###################################################### with torch.no_grad(): with torch.cpu.amp.autocast(): model = torch.jit.trace(model, torch.rand(1, 3, 224, 224)) model = torch.jit.freeze(model) model(data) ``` ##### BERT ``` import torch from transformers import BertModel model = BertModel.from_pretrained(args.model_name) model.eval() vocab_size = model.config.vocab_size batch_size = 1 seq_length = 512 data = torch.randint(vocab_size, size=[batch_size, seq_length]) #################### code changes #################### import intel_extension_for_pytorch as ipex model = ipex.optimize(model, dtype=torch.bfloat16) ###################################################### with torch.no_grad(): with torch.cpu.amp.autocast(): d = torch.randint(vocab_size, size=[batch_size, seq_length]) model = torch.jit.trace(model, (d,), check_trace=False, strict=False) model = torch.jit.freeze(model) model(data) ``` ### INT8 #### Calibration For calibrating a model with INT8 data type, code changes are highlighted in the code snippet below. Please follow the steps below: 1. Utilize `torch.fx.experimental.optimization.fuse` function to perform op folding for better performance. 2. Import `intel_extension_for_pytorch` as `ipex`. 3. Instantiate a config object with `ipex.quantization.QuantConf` function to save configuration data during calibration. 4. Iterate through calibration dataset under `ipex.quantization.calibrate` scope to perform the calibration. 5. Save the calibration data into a `json` file. 6. Invoke `ipex.quantization.convert` function to apply the calibration configure object to the fp32 model object to get an INT8 model. 7. Save the INT8 model into a `pt` file. ``` import os import torch model = Model() model.eval() data = torch.rand(<shape>) # Applying torch.fx.experimental.optimization.fuse against model performs # conv-batchnorm folding for better performance. import torch.fx.experimental.optimization as optimization model = optimization.fuse(model, inplace=True) #################### code changes #################### import intel_extension_for_pytorch as ipex conf = ipex.quantization.QuantConf(qscheme=torch.per_tensor_affine) for d in calibration_data_loader(): # conf will be updated with observed statistics during calibrating with the dataset with ipex.quantization.calibrate(conf): model(d) conf.save('int8_conf.json', default_recipe=True) with torch.no_grad(): model = ipex.quantization.convert(model, conf, torch.rand(<shape>)) ###################################################### model.save('quantization_model.pt') ``` #### Deployment ##### Imperative Mode In imperative mode, the INT8 model conversion is done on-the-fly. Please follow the steps below: 1. Utilize `torch.fx.experimental.optimization.fuse` function to perform op folding for better performance. 2. Import `intel_extension_for_pytorch` as `ipex`. 3. Load the calibration configuration object from the saved file. 4. Invoke `ipex.quantization.convert` function to apply the calibration configure object to the fp32 model object to get an INT8 model. 5. Run inference. ``` import torch model = Model() model.eval() data = torch.rand(<shape>) # Applying torch.fx.experimental.optimization.fuse against model performs # conv-batchnorm folding for better performance. import torch.fx.experimental.optimization as optimization model = optimization.fuse(model, inplace=True) #################### code changes #################### import intel_extension_for_pytorch as ipex conf = ipex.quantization.QuantConf('int8_conf.json') ###################################################### with torch.no_grad(): model = ipex.quantization.convert(model, conf, torch.rand(<shape>)) model(data) ``` ##### Graph Mode In graph mode, the INT8 model is loaded from the local file and can be used directly on the inference. Please follow the steps below: 1. Import `intel_extension_for_pytorch` as `ipex`. 2. Load the INT8 model from the saved file. 3. Run inference. ``` import torch #################### code changes #################### import intel_extension_for_pytorch as ipex ###################################################### model = torch.jit.load('quantization_model.pt') model.eval() data = torch.rand(<shape>) with torch.no_grad(): model(data) ``` oneDNN provides [oneDNN Graph Compiler](https://github.com/oneapi-src/oneDNN/tree/dev-graph-preview4/doc#onednn-graph-compiler) as a prototype feature which could boost performance for selective topologies. No code change is required. Please install <a class="reference external" href="installation.html#installation_onednn_graph_compiler">a binary</a> with this feature enabled. We verified this feature with `Bert-large`, `bert-base-cased`, `roberta-base`, `xlm-roberta-base`, `google-electra-base-generator` and `google-electra-base-discriminator`. ## C++ To work with libtorch, C++ library of PyTorch, Intel® Extension for PyTorch\* provides its C++ dynamic library as well. The C++ library is supposed to handle inference workload only, such as service deployment. For regular development, please use Python interface. Comparing to usage of libtorch, no specific code changes are required, except for converting input data into channels last data format. Compilation follows the recommended methodology with CMake. Detailed instructions can be found in [PyTorch tutorial](https://pytorch.org/tutorials/advanced/cpp_export.html#depending-on-libtorch-and-building-the-application). During compilation, Intel optimizations will be activated automatically once C++ dynamic library of Intel® Extension for PyTorch\* is linked. The example code below works for all data types. **example-app.cpp** ```cpp #include <torch/script.h> #include <iostream> #include <memory> int main(int argc, const char* argv[]) { torch::jit::script::Module module; try { module = torch::jit::load(argv[1]); } catch (const c10::Error& e) { std::cerr << "error loading the model\n"; return -1; } std::vector<torch::jit::IValue> inputs; // make sure input data are converted to channels last format inputs.push_back(torch::ones({1, 3, 224, 224}).to(c10::MemoryFormat::ChannelsLast)); at::Tensor output = module.forward(inputs).toTensor(); return 0; } ``` **CMakeLists.txt** ```cmake cmake_minimum_required(VERSION 3.0 FATAL_ERROR) project(example-app) find_package(intel_ext_pt_cpu REQUIRED) add_executable(example-app example-app.cpp) target_link_libraries(example-app "${TORCH_LIBRARIES}") set_property(TARGET example-app PROPERTY CXX_STANDARD 14) ``` **Command for compilation** ```bash $ cmake -DCMAKE_PREFIX_PATH=<LIBPYTORCH_PATH> .. $ make ``` If *Found INTEL_EXT_PT_CPU* is shown as *TRUE*, the extension had been linked into the binary. This can be verified with Linux command *ldd*. ```bash $ cmake -DCMAKE_PREFIX_PATH=/workspace/libtorch .. -- The C compiler identification is GNU 9.3.0 -- The CXX compiler identification is GNU 9.3.0 -- Check for working C compiler: /usr/bin/cc -- Check for working C compiler: /usr/bin/cc -- works -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Detecting C compile features -- Detecting C compile features - done -- Check for working CXX compiler: /usr/bin/c++ -- Check for working CXX compiler: /usr/bin/c++ -- works -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Detecting CXX compile features -- Detecting CXX compile features - done -- Looking for pthread.h -- Looking for pthread.h - found -- Performing Test CMAKE_HAVE_LIBC_PTHREAD -- Performing Test CMAKE_HAVE_LIBC_PTHREAD - Failed -- Looking for pthread_create in pthreads -- Looking for pthread_create in pthreads - not found -- Looking for pthread_create in pthread -- Looking for pthread_create in pthread - found -- Found Threads: TRUE -- Found Torch: /workspace/libtorch/lib/libtorch.so -- Found INTEL_EXT_PT_CPU: TRUE -- Configuring done -- Generating done -- Build files have been written to: /workspace/build $ ldd example-app ... libtorch.so => /workspace/libtorch/lib/libtorch.so (0x00007f3cf98e0000) libc10.so => /workspace/libtorch/lib/libc10.so (0x00007f3cf985a000) libintel-ext-pt-cpu.so => /workspace/libtorch/lib/libintel-ext-pt-cpu.so (0x00007f3cf70fc000) libtorch_cpu.so => /workspace/libtorch/lib/libtorch_cpu.so (0x00007f3ce16ac000) ... libdnnl_graph.so.0 => /workspace/libtorch/lib/libdnnl_graph.so.0 (0x00007f3cde954000) ... ``` ## Model Zoo Use cases that had already been optimized by Intel engineers are available at [Model Zoo for Intel® Architecture](https://github.com/IntelAI/models/tree/pytorch-r1.11-models). A bunch of PyTorch use cases for benchmarking are also available on the [Github page](https://github.com/IntelAI/models/tree/pytorch-r1.11-models/benchmarks#pytorch-use-cases). You can get performance benefits out-of-box by simply running scipts in the Model Zoo.