core.processors package¶
Submodules¶
core.processors.category_list module¶
A dictionary object representing the drawing category list.
This dictionary object maps the category ID to the category name.
core.processors.postprocessor module¶
A Postprocessor module.
This module provides an object-oriented design for postprocessing the outputs of machine learning models.
- Classes:
Postprocessor: An abstract base class for creating custom postprocessing implementations. ObjectDetectionPostprocessor: A concrete class implementing the Postprocessor for object
detection model outputs.
- FaceRecognitionPostprocessor: A concrete class implementing the Postprocessor for face
recognition model outputs.
- class core.processors.postprocessor.FaceRecognitionPostprocessor(drawing: dict)¶
Bases:
core.processors.postprocessor.Postprocessor
A concrete class implementing the Postprocessor for face recognition model outputs.
This class implement postprocess method defined in Postprocessor abstract base class for face recognition model outputs.
- Variables
_drawing (dict) – A dict object representing the drawing configuration.
- postprocess(frame: numpy.ndarray, outputs: dict) numpy.ndarray ¶
Implement the postprocess method for face recognition model outputs.
The method overrides the postprocess method defined in Postprocessor abstract base class. Postprocess the output by drawing boxes and labels on the input frame for object detection.
- class core.processors.postprocessor.ObjectDetectionPostprocessor(drawing: dict)¶
Bases:
core.processors.postprocessor.Postprocessor
A concrete class implementing the Postprocessor for object detection model outputs.
This class implement postprocess method defined in Postprocessor abstract base class for object detection model outputs.
- Variables
_drawing (dict) – A dict object representing the drawing configuration.
- postprocess(frame: numpy.ndarray, outputs: dict) numpy.ndarray ¶
Implement the postprocess method for object detection model outputs.
The method overrides the postprocess method defined in Postprocessor abstract base class. Postprocess the output by drawing boxes and labels on the input frame for object detection.
- class core.processors.postprocessor.Postprocessor¶
Bases:
abc.ABC
An abstract base class for creating custom postprocessing implementations.
This class serves as a blueprint for subclasses that need to implement postprocess method for different types of postprocessing tasks.
- abstract postprocess(frame: numpy.ndarray, outputs: dict) numpy.ndarray ¶
Postprocess the output by applying specific operations on the input frame.
- Parameters
frame (np.ndarray) – An np.ndarray object representing the input frame.
outputs (dict) – A dictionary object representing the output from the model.
- Returns
An np.ndarray object representing the postprocessed frame.
- Return type
np.ndarray
- Raises
NotImplementedError – If the subclasses don’t implement the method.
KeyError – If missing key in outputs.
RuntimeError – If any errors during postprocessing.
core.processors.preprocessor module¶
A Preprocessor module.
This module provides an object-oriented design for preprocessing the input data for machine learning models.
- Classes:
Preprocessor: An abstract base class for creating custom preprocessoring implementations.
- class core.processors.preprocessor.Preprocessor¶
Bases:
abc.ABC
An abstract base class for creating custom preprocessoring implementations.
This class serves as a blueprint for subclasses that need to implement preprocess method for different types of preprocessing tasks.
- abstract preprocess(frame: numpy.ndarray) numpy.ndarray ¶
Preprocess the input frame before feeding it to the model.
- Parameters
frame (np.ndarray) – An np.ndarray object representing the input frame.
- Returns
An np.ndarray object representing the preprocessed frame.
- Return type
np.ndarray
- Raises
NotImplementedError – If the subclasses don’t implement the method.
Module contents¶
The core.processors package.
This package contains the implementations of processors, which are used to process the output from model inference.